
Redbooks

Front cover

Accelerating Modernization 
with Agile Integration

Adeline SE Chun

Aiden Gallagher

Amar A Shah

Callum Jackson

Claudio Tagliabue

Iliya Dimitrov

James Blackburn

Joel Gomez

Kim Clark

Lee Gavin

Maria Menendez

Martin Evans

Mohammed Alreedi

Murali Sitaraman

Nick Glowacki

Shishir Narain

Timothy Quigly

Tony Curcio

Ulas Cubuk

Vasfi Gucer





IBM Redbooks

Accelerating Modernization with Agile Integration

January 2020

SG24-8452-00



© Copyright International Business Machines Corporation 2020. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (January 2020)

This edition applies to IBM Cloud Pak for Integration Version 2019.2.3.

Note: Before using this information and the product it supports, read the information in “Notices” on 
page xi.



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Now you can become a published author, too!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Stay connected to IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  Integration has changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2  Audience and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3  Navigating the book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2.  Agile integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1  Agile integration: A brief introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1  People: Decentralized integration ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2  Architecture: Delivery focused integration architecture. . . . . . . . . . . . . . . . . . . . . . 7
2.1.3  Infrastructure aspect: Cloud-portable integration infrastructure  . . . . . . . . . . . . . . . 9

2.2  The journey so far: SOA, ESBs, and APIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1  The forming of the ESB pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2  What went wrong for the centralized ESB pattern  . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3  The API economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3  Microservices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1  The rise of lightweight run times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2  Microservices architecture: A more agile and scalable way to build applications . 14
2.3.3  Comparing SOA and the microservices architecture  . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4  Bi-modal IT and decentralization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5  Decentralization and integration versus point-to-point  . . . . . . . . . . . . . . . . . . . . . 20

2.4  The three aspects of agile integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5  People: Decentralized integration ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1  Moving to a decentralized and business-focused team structure . . . . . . . . . . . . . 23
2.5.2  Big bangs generally lead to big disasters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.3  Decentralized integration ownership and decentralized infrastructures . . . . . . . . 25
2.5.4  Prioritizing project delivery first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.5  Evolving the role of the architect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.6  Automation: The key to consistency in decentralization . . . . . . . . . . . . . . . . . . . . 27
2.5.7  Producing multi-skilled developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.8  Conclusions on decentralized integration ownership  . . . . . . . . . . . . . . . . . . . . . . 30

2.6  Architecture: Delivery-focused architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.1  Consumer-centric API management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.2  Fine-grained application integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.3  Application-owned messaging and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.4  Conclusions on delivery-focused architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7  Technology: Cloud-native infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.1  Virtual machines, containers, and serverless . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.2  Cloud-native approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.3  Portability: Public, private, and multicloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.4  Conclusion on cloud-native integration infrastructure . . . . . . . . . . . . . . . . . . . . . . 39
© Copyright IBM Corp. 2020. All rights reserved. iii



Chapter 3.  Agile integration: Capability perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1  Capability perspective: API management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1  A brief history of API management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2  Cloud-native infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2  Capability perspective: Application integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1  Moving to a cloud-native approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2  Fine-grained deployment: Breaking up the ESB. . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.3  Grouping integrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.4  Stateless components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.5  Image-based deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.6  Elastic, agnostic infrastructure and container orchestration platforms . . . . . . . . . 60
3.2.7  Lightweight run times: How the modern integration run time has changed  . . . . . 62
3.2.8  Log-based monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.9  API intra-application communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.10  Event-driven architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.11  Agile methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.12  Continuous Integration and Continuous Delivery and Deployment. . . . . . . . . . . 63
3.2.13  DevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.14  Creating integrations is becoming easier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.15  Decentralizing integration ownership  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.16  Using integration run times in a microservices application  . . . . . . . . . . . . . . . . 66

3.3  Capability perspective: Messaging and event streams . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.1  A brief history of asynchronous communication . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.2  Introducing messaging and event streams concepts  . . . . . . . . . . . . . . . . . . . . . . 69
3.3.3  Differentiating capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.4  A detailed look at messaging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.5  A detailed look at event streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4  Capability perspective: Files and Business-to-Business . . . . . . . . . . . . . . . . . . . . . . 80
3.5  Hybrid and multicloud considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5.1  Multicloud: Multiple cloud services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5.2  Hybrid Cloud: Multiple deployment modes (public, private, and legacy). . . . . . . . 82
3.5.3  Evolution of API deployment modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6  Use cases driving hybrid and multicloud adoption  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.1  Multicloud strategy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.2  Cloud bursting and scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.3  Disaster recovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.4  Application affinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.5  Regional flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.6  Geographical high availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 4.  Cloud-native concepts and technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1  Defining cloud-native. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2  Key elements of cloud-native applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1  Modular components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.2  Preferring stateless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.3  Immutable deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.4  Elastic, agnostic infrastructure and container orchestration platforms . . . . . . . . . 92
4.2.5  Lightweight run times  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.6  Log-based monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.7  API-led intra-application communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.8  The reprise of event-driven architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.9  Agile methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
iv Accelerating Modernization with Agile Integration



4.2.10  Continuous Integration and Continuous Delivery and Deployment. . . . . . . . . . . 97
4.2.11  Continuous Adoption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.12  DevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3  Twelve-factor apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.1  Conclusion on 12-factor apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4  Container technology: the current state of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1  Containers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.2  Container orchestration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.3  Kubernetes primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5  Cloud-native is not for everyone, nor for everything . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.6  Realizing the true benefits of containerization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.7  Application boundaries in a container-based world. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7.1  Implicit and explicit boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.7.2  Why do application boundaries matter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.7.3  How should we choose the application boundaries?  . . . . . . . . . . . . . . . . . . . . . 115

4.8  Service mesh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.8.1  Role of a service mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.8.2  Service meshes and API management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.9  Cloud-native security – an application-centric perspective . . . . . . . . . . . . . . . . . . . . . 128
4.9.1  Scope of this section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.9.2  Limitations of traditional security models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.9.3  Challenges unique to cloud-native . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.9.4  Securing a cloud-native application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.9.5  Hybrid solutions: Securing cloud to cloud and cloud to ground  . . . . . . . . . . . . . 135

4.10  The future of cloud-native . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.10.1  Are software-as-a-service applications serverless? . . . . . . . . . . . . . . . . . . . . . 139
4.10.2  Function-as-a-service: a more accurate term for serverless?. . . . . . . . . . . . . . 140
4.10.3  Could any runtime be provided in a FaaS model?  . . . . . . . . . . . . . . . . . . . . . . 140
4.10.4  FaaS for cloud-native? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.10.5  Are there downsides to FaaS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.10.6  Conclusions on FaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Chapter 5.  IBM Cloud Pak for Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.1  IBM Cloud Pak for Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.1.1  One platform supported by common services. . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.1.2  IBM Cloud Pak for Integration - benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.1.3  License flexibility for other non-containerized architectures . . . . . . . . . . . . . . . . 145
5.1.4  Getting access to IBM Cloud Pak for Integration for the exercises. . . . . . . . . . . 145

5.2  Red Hat OpenShift Container Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3  API Lifecycle: IBM API Connect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3.1  Key phases of the API Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.3.2  API Lifecycle components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.3.3  API lifecycle in combination with other capabilities . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.4  Product deployment options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4  Integration security: IBM DataPower Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.4.1  Security Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4.2  API Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.4.3  DataPower and agile integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.5  Application integration: IBM App Connect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.5.1  User-aligned integration tooling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.5.2  No-code RESTful integration services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.5.3  Flexible integration patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.5.4  Broad deployment options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
 Contents v



5.5.5  Extended connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.5.6  Situational awareness with insightful and actionable notifications  . . . . . . . . . . . 157
5.5.7  Quick utilization of artificial intelligence (AI) services . . . . . . . . . . . . . . . . . . . . . 157
5.5.8  Rapid visual orchestration of data and systems for API-driven architectures . . . 157
5.5.9  Lightweight integration runtime for cloud native deployment  . . . . . . . . . . . . . . . 157
5.5.10  Grown from a trusted market leading product. . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.5.11  IBM App Connect on deployment options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.6  Enterprise Messaging: IBM MQ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.7  Event Streaming: IBM Event Streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.8  High-Speed File Transfer: IBM Aspera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.8.1  Fast, Adaptive and Secure Protocol (FASP) technology  . . . . . . . . . . . . . . . . . . 161
5.8.2  Aspera on Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.9  Service Mesh: Istio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Chapter 6.  Practical agile integration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.2  Application Integration to front a data store with a basic API  . . . . . . . . . . . . . . . . . . . 173

6.2.1  Db2 setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2.2  Db2 table setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.2.3  Swagger definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.3  Expose an API using API Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.3.1  Importing the API definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.3.2  Configuring the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.3.3  Merging two application flows into a single API  . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.3.4  Add simple security to the API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.4  Messaging for reliable asynchronous data update commands . . . . . . . . . . . . . . . . . . 209
6.4.1  Enable create, update, delete via commands. . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.4.2  Deploy and configure Queue Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.4.3  Queue manager configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.4.4  DB commands implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.4.5  Graphical data maps implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.4.6  Policy definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
6.4.7  BAR file creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6.4.8  Override policies for environment specific values . . . . . . . . . . . . . . . . . . . . . . . . 255
6.4.9  Global transaction coordination considerations  . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.4.10  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6.5  Consolidate the new IBM MQ based command pattern into the API  . . . . . . . . . . . . . 259
6.5.1  Defining the API data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
6.5.2  Paths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
6.5.3  Securing the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.5.4  The Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.5.5  API testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
6.5.6  API socialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
6.5.7  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

6.6  Advanced API security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
6.6.1  Import the API into IBM API Connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.6.2  Configure the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.6.3  Add basic security to the API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.6.4  Test the API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.6.5  Securing the API Using OAUTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.6.6  External client testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

6.7  Create event stream from messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
6.7.1  Creating a new event stream topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
vi Accelerating Modernization with Agile Integration



6.7.2  Running the IBM MQ source connector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
6.7.3  Configuring the connector to connect to IBM MQ . . . . . . . . . . . . . . . . . . . . . . . . 326

6.8  Perform event-driven SaaS integration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
6.8.1  Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
6.8.2  IBM App Connect event-driven flow to Salesforce, Google and Slack SaaS 

applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
6.8.3  Prerequisites  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
6.8.4  Create flows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
6.8.5  Test your flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
6.8.6  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

6.9  Implementing a simple hybrid API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
6.9.1  Business scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
6.9.2  Invoking existing APIs from IBM App Connect Designer  . . . . . . . . . . . . . . . . . . 346
6.9.3  Solution overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
6.9.4  Preparing the external SaaS applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
6.9.5  Create simulated on-premises API flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
6.9.6  Create Hybrid API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
6.9.7  Test the flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
6.9.8  First, test the simulated on-premises API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
6.9.9  Final Hybrid API integrated testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
6.9.10  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

6.10  Implement event sourced APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
6.10.1  Implementing the query side of the CQRS pattern . . . . . . . . . . . . . . . . . . . . . . 368
6.10.2  Event sourced programming - a practical example. . . . . . . . . . . . . . . . . . . . . . 369
6.10.3  How to do it? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
6.10.4  Creating the flow in IBM App Connect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
6.10.5  Mapping the received events to the output required . . . . . . . . . . . . . . . . . . . . . 378
6.10.6  Sending the new payload to the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
6.10.7  Client applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

6.11  REST and GraphQL based APIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
6.11.1  IBM, GraphQL, and Loopback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
6.11.2  LoopBack models and relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

6.12  API testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
6.12.1  Create a test from an API request  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
6.12.2  Update the test case from a Swagger file and publish . . . . . . . . . . . . . . . . . . . 403
6.12.3  Gain insights into API quality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

6.13  Large file movement using the claim check pattern  . . . . . . . . . . . . . . . . . . . . . . . . . 410
6.13.1  Build the file transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
6.13.2  Build an event-driven flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Chapter 7.  Field notes on modernization for application integration  . . . . . . . . . . . . 433
7.1  IBM App Connect adoption paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

7.1.1  Agile integration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
7.1.2  Adoption path options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
7.1.3  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

7.2  Splitting up the ESB: Grouping integrations in a containerized environment  . . . . . . . 441
7.2.1  What grouping do you have today?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
7.2.2  Splitting by business domain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
7.2.3  What about integrations that span business domains?. . . . . . . . . . . . . . . . . . . . 443
7.2.4  Grouping within a domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
7.2.5  Stable requirements and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
7.2.6  Synchronous versus asynchronous patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
7.2.7  Shared lifecycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
 Contents vii



7.2.8  A worked example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
7.2.9  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

7.3  When does IBM App Connect need a local MQ server?. . . . . . . . . . . . . . . . . . . . . . . 452
7.3.1  Benefits of being dependency-free in container-based environments  . . . . . . . . 452
7.3.2  When can we manage without a local MQ server?. . . . . . . . . . . . . . . . . . . . . . . 454
7.3.3  Can I talk to multiple queues in the same transaction without a local MQ server? . . 

456
7.3.4  Coordinating a two-phase commit requires a local MQ server . . . . . . . . . . . . . . 457
7.3.5  When else do I need a local MQ server?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
7.3.6  Why do we have so many integrations that use server connections?  . . . . . . . . 459
7.3.7  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

7.4  Mapping images to helm charts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
7.4.1  Developing helm charts for Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
7.4.2  Upgrading (extending) helm charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

7.5  Continuous Integration and Continuous Delivery Pipeline using IBM App Connect V11 
architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

7.5.1  Continuous Integration Delivery and Deployment. . . . . . . . . . . . . . . . . . . . . . . . 467
7.5.2  Example pipeline - High-level concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
7.5.3  CI/CD pipeline in depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
7.5.4  Considerations for CI/CD pipelines with IBM App Connect  . . . . . . . . . . . . . . . . 471
7.5.5  Practical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

7.6  Continuous Adoption for IBM App Connect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
7.6.1  What does Continuous Adoption apply to in IBM App Connect?  . . . . . . . . . . . . 485
7.6.2  How can Continuous Adoption be implemented with IBM App Connect?. . . . . . 486

7.7  High Availability and Scaling considerations for IBM App Connect in containers . . . . 490
7.7.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
7.7.2  Scaling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
7.7.3  High Availability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

7.8  Migrating centralized ESB to IBM App Connect on containers . . . . . . . . . . . . . . . . . . 493
7.8.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
7.8.2  Considerations for IBM MQ based integrations in containers . . . . . . . . . . . . . . . 494
7.8.3  Considerations for Http/WebServices based integration flows in containers  . . . 511
7.8.4  Considerations for integrations that interact with databases. . . . . . . . . . . . . . . . 512
7.8.5  Considerations for in containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
7.8.6  Considerations for TCP/IP based integrations in containers. . . . . . . . . . . . . . . . 522
7.8.7  Considerations for file-based integration in containers . . . . . . . . . . . . . . . . . . . . 524
7.8.8  Considerations for integrating IBM App Connect with IBM Event Streams. . . . . 528

7.9  Splitting an integration across on-premises and cloud . . . . . . . . . . . . . . . . . . . . . . . . 534
7.9.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
7.9.2  Using callable flows with IBM App Connect Designer. . . . . . . . . . . . . . . . . . . . . 535
7.9.3  Callable flows versus APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
7.9.4  Cloud debugger for ACE on Cloud applications . . . . . . . . . . . . . . . . . . . . . . . . . 537

Chapter 8.  Field notes on modernization for API lifecycle . . . . . . . . . . . . . . . . . . . . . 539
8.1  Move from DataPower only to API Connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

8.1.1  Security Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
8.1.2  API gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
8.1.3  Connectivity and mediation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
8.1.4  DataPower and API Connect compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
8.1.5  DataPower to API Connect migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

8.2  Enterprise APIs across a hybrid or multicloud boundary. . . . . . . . . . . . . . . . . . . . . . . 545
8.3  How many API Connect Clouds and Gateways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

8.3.1  Separate API Clouds  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
viii Accelerating Modernization with Agile Integration



8.3.2  Separate API Gateway Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
8.4  Organization, Catalog and Space responsibilities for APIs . . . . . . . . . . . . . . . . . . . . . 549
8.5  Automated provisioning of a new API provider team  . . . . . . . . . . . . . . . . . . . . . . . . . 550
8.6  High availability and scaling on containers for API Management . . . . . . . . . . . . . . . . 553

8.6.1  High availability in a containerized environment . . . . . . . . . . . . . . . . . . . . . . . . . 553
8.6.2  Scalability of API Connect in containerized environment . . . . . . . . . . . . . . . . . . 560
8.6.3  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

8.7  IBM API Connect API Test Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
8.7.1  Practical Test Pyramid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
8.7.2  Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
8.7.3  Test types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
8.7.4  Automated testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
8.7.5  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Chapter 9.  Field notes on modernization for messaging . . . . . . . . . . . . . . . . . . . . . . 571
9.1  Modernizing your messaging topology with containers. . . . . . . . . . . . . . . . . . . . . . . . 572

9.1.1  Typical existing topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
9.1.2  Removing local connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
9.1.3  Containerizing queue managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
9.1.4  Fine-grained queue manager deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
9.1.5  Decentralization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
9.1.6  Application containerization and operational consistency. . . . . . . . . . . . . . . . . . 580

9.2  IBM MQ availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
9.2.1  Kubernetes deployment styles: Deployments (replica sets) versus stateful sets 582
9.2.2  Multi-instance queue managers in containers. . . . . . . . . . . . . . . . . . . . . . . . . . . 585
9.2.3  Further improving service availability with additional independent queue managers

586
9.2.4  Connection distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

9.3  IBM MQ scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
9.4  Automation of IBM MQ provisioning using a DevOps pipeline . . . . . . . . . . . . . . . . . . 594

9.4.1  Design for DevOps pipeline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
9.4.2  Building a sample IBM MQ pipeline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Appendix A.  Additional material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
Locating the GitHub material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
Cloning the GitHub material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
 Contents ix



x Accelerating Modernization with Agile Integration



Notices

This information was developed for products and services offered in the US. This material might be available 
from IBM in other languages. However, you may be required to own a copy of the product or product version in 
that language in order to access it. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in 
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” 
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in 
certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM websites are provided for convenience only and do not in any 
manner serve as an endorsement of those websites. The materials at those websites are not part of the 
materials for this IBM product and use of those websites is at your own risk. 

IBM may use or distribute any of the information you provide in any way it believes appropriate without 
incurring any obligation to you. 

The performance data and client examples cited are presented for illustrative purposes only. Actual 
performance results may vary depending on specific configurations and operating conditions. 

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products. 

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and 
represent goals and objectives only. 

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to actual people or business enterprises is entirely 
coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are 
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use 
of the sample programs. 
© Copyright IBM Corp. 2020. All rights reserved. xi



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines 
Corporation, registered in many jurisdictions worldwide. Other product and service names might be 
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright 
and trademark information” at http://www.ibm.com/legal/copytrade.shtml 

The following terms are trademarks or registered trademarks of International Business Machines Corporation, 
and might also be trademarks or registered trademarks in other countries. 

AIX®
Aspera®
Cloudant®
DataPower®
DB2®
FASP®

IBM®
IBM API Connect®
IBM Cloud™
IBM Cloud Pak™
OpenWhisk®
Redbooks®

Redbooks (logo) ®
Terraform®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Evolution, are trademarks or registered trademarks of Kenexa, an IBM Company.

LoopBack, are trademarks or registered trademarks of StrongLoop, Inc., an IBM Company.

ITIL is a Registered Trade Mark of AXELOS Limited.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive 
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, 
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its 
affiliates.

Ceph, OpenShift, Red Hat, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the 
United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VMware, and the VMware logo are registered trademarks or trademarks of VMware, Inc. or its subsidiaries in 
the United States and/or other jurisdictions.

Other company, product, or service names may be trademarks or service marks of others. 
xii Accelerating Modernization with Agile Integration

http://www.ibm.com/legal/copytrade.shtml


Preface

The organization pursuing digital transformation must embrace new ways to use and deploy 
integration technologies, so they can move quickly in a manner appropriate to the goals of 
multicloud, decentralization, and microservices. The integration layer must transform to allow 
organizations to move boldly in building new customer experiences, rather than forcing 
models for architecture and development that pull away from maximizing the organization's 
productivity. Many organizations have started embracing agile application techniques, such 
as microservice architecture, and are now seeing the benefits of that shift. This approach 
complements and accelerates an enterprise's API strategy. Businesses should also seek to 
use this approach to modernize their existing integration and messaging infrastructure to 
achieve more effective ways to manage and operate their integration services in their private 
or public cloud.

This IBM® Redbooks® publication explores the merits of what we refer to as agile 
integration; a container-based, decentralized, and microservice-aligned approach for 
integration solutions that meets the demands of agility, scalability, and resilience required by 
digital transformation. It also discusses how the IBM Cloud Pak for Integration marks a 
significant leap forward in integration technology by embracing both a cloud-native approach 
and container technology to achieve the goals of agile integration.

The target audiences for this book are cloud integration architects, IT specialists, and 
application developers.

Authors

This book was produced by a team of specialists from around the world working in IBM 
Hursley Center.

Adeline SE Chun is a certified IT Specialist working for IBM 
Singapore as a ASEAN Technical Leader in Connectivity and 
Integration solutions. Adeline has over 20 years of experience 
in IT and specialized in Enterprise Connectivity and Integration 
Solutions. Prior to joining IBM Singapore in 2010, she worked 
as an IT architect for IBM Toronto Lab Services since 1997, 
implementing IBM WebSphere® e-Business solutions for 
worldwide banks, including HSBC, Banco Santigo, ING, ICBC 
Shanghai, Barclays Bank UK, ANZ Bank, and BBL Belgium. 
Using the WebSphere architecture, she implemented Teller, 
Call Center, and Internet banking solutions based on the IBM 
service-oriented architecture (SOA) methodology. As a 
technical leader, Adeline helps the sales teams across ASEAN 
to deliver technical solution workshops and proposals on 
Enterprise Integration solutions. Adeline is viewed as a senior 
technical consultant and has long standing relationships with 
IBM Customers in all Geographies. She is considered a 
Subject Matter Expert for MQ, IBM Integration Bus, MQ 
Telemetry Transport (MQTT) and other connectivity 
technologies across broad platform. 
© Copyright IBM Corp. 2020. All rights reserved. xiii



Aiden Gallagher is an Integration Consultant for the UK and 
Ireland working with API Connect, IBM App Connect, MQ and 
DataPower® products. He joined IBM in 2015 having 
graduated from Nottingham Trent University with a degree in 
Computer Science. His areas of expertise include Open 
Banking, Cloud Deployments and integration. He has written 
extensively on the history of integration, NodeJS, Agile and API 
Connect. You can find a list of his articles, node modules, 
achievements and projects here; 
https://www.linkedin.com/in/aiden-gallagher-a5a698b7/.

Amar Shah is a Serviceability Architect working with the IBM 
Application Integration support team. He is responsible for 
worldwide support for clients of IBM App Connect (formerly 
Integration Bus) and the serviceability enhancement of 
products. He is also a designated Lab Advocate for key clients 
and provides advice and consultancy on product solution and 
usage best practices. Amar Shah has been associated with 
IBM for the past 17 years, and holds a Master's degree in 
Software Systems from Birla Institute of Technology, Pilani, 
India.

Callum Jackson is a solution architect within the IBM 
Messaging Offering Management team. He works as a 
technical gateway between clients and the IBM development 
team, to understand client challenges, and how IBM 
Messaging and the wider IBM Integration portfolio can solve 
these. Prior to this, Callum spent several years within the IBM 
Lab Services organization, building Integration solutions across 
the IBM Integration portfolio.

Claudio Tagliabue is an IBM Cloud™ Solution Architect 
experienced in the world of Digital Transformation and the 
world of XaaS. He is excited by business change in the 21st 
Century and the consequent demands on technology. Making 
the "complicated" "business as usual" has been Tag’s focus for 
the past 10 years. Through his work with clients as a domain 
expert for IBM's ground-breaking cloud technologies, Tag has 
gained significant insight into today's senior IT stakeholder 
motivations. Tag has worked in various IBM labs, and regularly 
presents at conferences around the world, focusing on Public 
and Private Cloud, Kubernetes (K8s), Terraform®, 
microservices, BPM, RPA, IaaS, PaaS, and 
software-as-a-service (SaaS). Tag also authored two IBM 
Redbooks publications. He can be followed on 
Twitter@ClaudioTag.
xiv Accelerating Modernization with Agile Integration

https://www.linkedin.com/in/aiden-gallagher-a5a698b7/


Iliya Dimitrov is an Early Experience Programs Manager for 
IBM App Connect in IBM UK. He has worked with the product 
since WebSphere Message Broker V7, focusing on Worldwide 
Early customers' engagements and enablement. He holds two 
Master's degrees in Electronics and Communication Systems 
Engineering from Technical University of Varna, Bulgaria and 
University of Portsmouth, United Kingdom. Iliya is an IBM 
Certified IT Specialist liaising with clients and internal 
development teams delivering education and helping Early 
Product adoption with the latest product's features.

James Blackburn is the Principal Architect for Integration and 
Middleware at Marks & Spencer, a leading British retailer. 
James is accountable for the integration roadmap, architecture 
and design of integration, API and middleware technology for 
Marks & Spencer, this spans all cloud and on-premises 
integration, message orientated middleware, managed file 
transfer, Business-to-Business (B2B) and Electronic Data 
Interchange (EDI), ETL, Events, Services and APIs. James 
holds a Master of Science degree in Software Engineering and 
has been working with IBM integration technology for over 12 
years all centred around digital retail and commerce use cases. 
predominantly using MQ and App Connect.

Joel Gomez is a Sr. Integration Technical Specialist for North 
America with more than 27 years of experience in technical 
sales related to Application and Integration Middleware 
solutions, including MQ, App Connect, and API Connect. He 
holds a Masters degree in e-Commerce from Instituto 
Tecnologico y de Estudios Superiores de Monterrey in Mexico. 
His areas of expertise include Cloud Computing, SOA & API 
Economy, as well as Application Development, Web, Mobile & 
Microservices Technologies. In recent years he has focused on 
Integration for Healthcare creating the North America 
Integration for Healthcare User Group 
(https://community.ibm.com/community/user/imwuc/communi
ties/community-home?communitykey=32ce99a0-ddc0-4e99-a80
0-13a9f3563f38&tab=groupdetails), and leading a monthly 
call with some of the largest healthcare providers and payers in 
North America, where they discuss topics like the Healthcare 
Pack, DICOM, HIPAA, HL7 and FHIR. 

Kim Clark is a technical strategist for IBM Cloud Pak™ for 
Integration working as an architect providing guidance to the 
offering management team on current trends and challenges. 
He has spent the last couple of decades working in the field 
implementing integration and process related solutions. You 
can find Kim on LinkedIn: 
https://www.linkedin.com/in/kimjulianclark?.
 Preface xv

https://community.ibm.com/community/user/imwuc/communities/community-home?communitykey=32ce99a0-ddc0-4e99-a800-13a9f3563f38&tab=groupdetails
https://community.ibm.com/community/user/imwuc/communities/community-home?communitykey=32ce99a0-ddc0-4e99-a800-13a9f3563f38&tab=groupdetails
https://community.ibm.com/community/user/imwuc/communities/community-home?communitykey=32ce99a0-ddc0-4e99-a800-13a9f3563f38&tab=groupdetails
https://www.linkedin.com/in/kimjulianclark


Lee Gavin is a Technical Specialist on the European Technical 
Sales team with IBM. She has many years experience advising 
customers and implementing integration solutions using IBM's 
integration capabilities. Prior to joining the European team she 
was a member of the World Wide Technical Sales team. Lee 
has written, delivered hands-on workshops and presented 
extensively over the years, on areas ranging from Hybrid 
Integration to Business Process Automation. In a previous life 
she was also a Project Leader with the International Technical 
Support Organization at the Hursley and Raleigh Centers and 
is the author of over a dozen IBM Redbooks.

Maria Menendez leads North America Technical Sales for 
IBM’s Cloud Integration software portfolio. She has over 20 
years of experience in integration and business process 
automation. Maria began her carer as an IBM customer, 
implementing 3270 and 5250 screen scraping Java-based web 
solutions, then implementing MQ and WebSphere Business 
Integration and B2B solutions. At IBM, Maria has worked with 
customers in Central Region, North America and around the 
world in various technical sales and technical leadership roles 
in Integration, Business Process Automation and Analytics. 
She can be reached at 
https://www.linkedin.com/in/maria-menendez-she-her-76a0
9b8/.

Martin Evans is an Integration Architect working in the IBM 
Cloud Integration Expert Labs providing customers with 
integration consultancy services. He has been delivering 
integration solutions for over 15 years predominantly in the 
financial services sector and more recently for the retail 
industry.

Mohammed Alreed is the IBM technical leader for integration 
in the Middle East and Africa (MEA). He is an IT certified 
technical specialist for Integration, Mobile and API Economy 
with expertise in full lifecycle API management, application 
integration, enterprise messaging, high speed file transfer and 
mobile backend-as-a-service. Mohammed Alreedi is 
responsible for providing strategic business, technical advises 
and recommendations for IBM MEA integration team. He is 
focusing now on "mega projects" to bridge the power of 
analytics and AI with the API experience which take the client 
through the journey of data monetization. He can be reached at 
https://www.linkedin.com/in/alreedi.
xvi Accelerating Modernization with Agile Integration

https://www.linkedin.com/in/alreedi
https://www.linkedin.com/in/maria-menendez-she-her-76a09b8/
https://www.linkedin.com/in/maria-menendez-she-her-76a09b8/


Murali Sitaraman is a Senior Technical Specialist in the Cloud 
Integration space in Switzerland. After his early career working 
on mobile internet (WAP) for a telco, Murali re-joined IBM in 
2007 and has focused on the middleware- and integration 
space ever since. Over time he has gathered knowledge on 
Application Server, BPM, Business Rules, Business Event 
Management, Mobile Application Development, API 
Management and Cloud Integration. He has coauthored the 
product certification for the latest version of API Connect. He 
holds an MBA which enables him to translate tech-to-business 
- which he refers to as "another form of integration". Murali 
presents at events and conducts workshops on the topic of 
Integration Modernization. He shares his insights and views on 
n https://ch.linkedin.com/in/msit and a the more personal 
side on twitter @atech_e.

Nick Glowacki is a technical evangelist for IBM Integration and 
advises large financial services organizations across the US 
who are investing on the leading edge. He has spent the last 5 
years working with businesses who are transforming their 
integration architectures along a microservices journey. Nick 
leverages his experiences prior to IBM where he led the 
development and architecture of a microservices framework at 
a time prior to these techniques becoming. Across his career, 
he has held various other roles including developer, architect 
and integration security specialist. Nick can "go deep" on a 
number of technologies, including node, xsl, JSON, Docker, 
Solr, K8s, Java, SOAP, XML, C++, Docker, WebSphere 
Application Server, Filenet, MQ, API Connect, App Connect. 

Shishir Narainis a certified IT Specialist working for IBM India. 
He has over two decades of experience in IT. He holds a 
master's degree in Industrial Management & Engineering from 
IIT Kanpur. He has worked in multiple large IT transformation 
projects as an IT Architect. His primary expertise is with IBM 
middleware products like WebSphere Application Server, MQ, 
App Connect, and API Connect - and he has written 
extensively on them. He can be reached at 
https://www.linkedin.com/in/nshishir/.

Timothy Quigly is an Integration Consultant working for IBM 
Cloud Expert Labs in the United Kingdom and Ireland. Tim 
works with customers throughout the UK and his focus is on 
developing DevOps approaches for integration using App 
Connect and MQ with Docker and K8s. Prior to Tim's life in 
consulting he worked as part of the IBM MQ development team 
in IBM's Hursley Labs, focusing on testing integration across 
Linux, Windows and IBM z/OS® environments. Tim holds four 
United States patents and has presented at conferences such 
as Impact and the WebSphere User Group. He can be reached 
at https://uk.linkedin.com/in/timquigly.
 Preface xvii

https://ch.linkedin.com/in/msit
https://www.linkedin.com/in/nshishir/.
https://uk.linkedin.com/in/timquigly


Thanks to the following people for their contributions to this project:

Mike Alley, Erik D. Anderson, Alan Glickenhouse, Matt Lesher, Bruno Neves, Monica 
Raffaelli, Asim Siddiqui, Dan Temkin 
IBM USA

Chris Phillips, Phil Coxhead, Andy Garratt, Rob Nicholson, Trevor Dolby, Rob Convery, 
Giacomo Chiarella, Richard Hine, Luca Floris, Chris Dudley, Simon Kapadia, Trevor 
Dolby, Matthew Clarke, Justin Deane, Alan Chatt, David Ware, Matt Roberts
IBM UK 

Len Thornton 
IBM Canada

Oliver Lucht
IBM Germany

Jeroen van Der Schot
IBM France

Tony Curcio has been focused on helping organizations 
leverage data and application integration technologies to 
maximize the impact of their digital assets to fuel business 
transformation for the past 20 years. After years of building 
solutions with customers, he joined the IBM Offering 
Management team where he led the strategy and roadmap for 
a set of integration, quality and governance technologies. Now 
as the Director of API Management and Gateway, Tony leads a 
worldwide team focused on helping customers through their 
digital transformation, spanning both cloud and on-premise 
topologies.

Ulas Cubuk has over 10 years of experience working with 
customers in Europe, Middle East and Africa across various 
industry verticals implementing middleware solutions. She has 
actively taken part in software development life cycle as a 
programmer, tester, analyst, configuration manager and team 
leader within varieties of GIS, ERP and banking projects. She 
holds a Master's degree in Geographical Information Systems 
and Environmental Engineering from Middle East Technical 
University. Ulas has recently joined the IBM Offering Manager 
team, where she helps set product direction based on her 
practical customer-focused experiences.

Vasfi Gucer is an IBM Redbooks Project Leader with the IBM 
International Technical Support Organization. He has more 
than 20 years of experience in the areas of systems 
management, networking hardware, and software. He writes 
extensively and teaches IBM classes worldwide about IBM 
products. His focus has been on cloud computing for the last 5 
years. Vasfi is also an IBM Certified Senior IT Specialist, 
Project Management Professional (PMP), IT Infrastructure 
Library (ITIL) V2 Manager, and ITIL V3 Expert.
xviii Accelerating Modernization with Agile Integration



Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published 
author—all at the same time! Join an IBM Redbooks residency project and help write a book 
in your area of expertise, while honing your experience using leading-edge technologies. Your 
efforts help to increase product acceptance and customer satisfaction, as you expand your 
network of technical contacts and relationships. Residencies run from two to six weeks in 
length, and you can participate either in person or as a remote resident working from your 
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or 
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks 
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html


xx Accelerating Modernization with Agile Integration



Chapter 1. Introduction

This chapter introduces agile integration and summarizes what we cover in this 
IBM Redbooks publication. 

The following topics are covered in this chapter:

� Integration has changed
� Audience and scope
� Navigating the book

1

© Copyright IBM Corp. 2020. All rights reserved. 1



1.1  Integration has changed

Over the last few years, we have seen a tremendous acceleration in which customers are 
establishing digital transformation initiatives. In fact, International Data Corporation (IDC) 
estimated that by 2021, driven by line of business (LOB) needs, 70% of CIOs deliver agile 
connectivity through APIs and architectures that interconnect digital solutions from cloud 
vendors, system developers, start-ups, and others.1 It is a staggering figure regarding the 
impact across all industries and companies of all sizes. A primary focus of this digital 
transformation is to build connected customer experiences across a network of applications 
that use data of all types.

However, bringing together these processes and information sources at the correct time and 
within the correct context has become increasingly complicated. Consider that many 
organizations aggressively adopted software-as-a-service (SaaS) business applications and 
spread their key data sources across a much broader landscape. Additionally, new data 
sources that are available from external data providers must be injected into business 
processes to create competitive differentiation.

Finally, AI capabilities, which are being attached to many customer-facing applications, 
require a broad range of information to train, improve, and correctly respond to business 
events. These processes and information sources must be integrated by making them 
accessible synchronously through APIs, propagated in near real time by event streams, and 
by using a multitude of other mechanisms.

The rise of the digital economy, like most of the seismic technology shifts over the past 
several centuries, fundamentally changed technology and business. The concept of “digital 
economy” continues to evolve. It was a section of the economy that was built on digital 
technologies but has evolved to become almost indistinguishable from the traditional 
economy. And it grows to include almost any new technology, such as mobile, the Internet of 
Things (IoT), cloud computing, and artificial intelligence.

At the heart of the digital economy is the basic need to connect disparate data. This need led 
to the rise of integration, which is the need to connect multiple applications, data, and 
devices. As a result, the system delivers the greatest insight to the people and systems who 
can act on it. 

Agile integration architecture draws learning from hundreds of customer interactions and 
takes note of the dramatic changes that affect the integration landscape. The book looks at 
how customers are improving the agility of their integration landscape to align with the parallel 
advances occurring in their application delivery. 

This book explores agile integration concepts in renewed detail and breadth, and is 
supplemented with practical examples and field notes that are gathered from the experiences 
of early adopters. Our aim is to collate meaningfully as much of the current theoretical and 
practical knowledge around integration modernization into one place to better enable IT 
leaders in their pursuit of digital transformation.

1  IDC Reveals Worldwide CIO Agenda 2019 Predictions - 
https://www.idc.com/getdoc.jsp?containerId=prUS44420918
2 Accelerating Modernization with Agile Integration

http://ibm.biz/agile-integration-ebook
https://www.idc.com/getdoc.jsp?containerId=prUS44420918


1.2  Audience and scope

Chapter 2, “Agile integration” on page 5 through Chapter 4, “Cloud-native concepts and 
technology” on page 85 cover relatively deep architectural territory. But we aim to define all 
terms and technologies that are mentioned so that it is suitable for any reader. Our 
expectation is that many readers are a familiar with integration as a topic and have 
experience with one or more integration technologies. We move relatively quickly over topics 
that we expect that the reader knows. 

Then, we focus on technology that empowers a modern integration journey. Chapter 5, “IBM 
Cloud Pak for Integration” on page 143 introduces the core integration capabilities. Chapter 6, 
“Practical agile integration” on page 169 is written such that the scenarios should be readable 
even where they involve capabilities in which you might not be a specialist. Chapter 7, “Field 
notes on modernization for application integration” on page 433 through Chapter 9, “Field 
notes on modernization for messaging ” on page 571 are written for specialists, and they 
describe some of the common issues with typical modernization programs. 

A single book cannot document integration modernization in its entirety, especially in a space 
that is under such rapid evolution. For more information about this topic, see the following 
resources:

� Agile Integration

� API Management 

� Application Integration 

� Messaging and Events 

1.3  Navigating the book

Chapter 2, “Agile integration” on page 5 explores the effect that digital transformation has on 
both the application and integration landscape, and the limitations of previous techniques. We 
describe what led us to this point, the pros and cons of service-oriented architecture (SOA) 
and the enterprise services bus (ESB) pattern, the influence of APIs, and the introduction of 
the microservices architecture. We also describe the current state of agile integration. 

The various capabilities that are associated with integration provide differing contributions to 
digital transformation. Chapter 3, “Agile integration: Capability perspectives” on page 41 
explores three core technological perspectives: application integration, API management, and 
messaging and events. And it describes how their usage is changing in the context of agile 
integration. 

Chapter 4, “Cloud-native concepts and technology” on page 85 provides a detailed 
description of what it means to build solutions by using cloud-native techniques. These 
concepts are the same for any type of component, so they have the same concerns for an 
application developer as they do for someone implementing integration. 

Chapter 5, “IBM Cloud Pak for Integration” on page 143 provides an overview of IBM Cloud 
Pak for Integration, and describes recent advances that enable integration modernization. 
Chapter 1. Introduction 3

https://developer.ibm.com/integration/blog
https://developer.ibm.com/apiconnect/blog
https://developer.ibm.com/messaging/blog
https://www.ibm.com/cloud/integration/agile-integration


Chapter 6, “Practical agile integration” on page 169 describes basic, practical scenarios that 
use integration capabilities that are based on common use cases for agile integration. This 
chapter explores expansion from simple exposure of a database, through managed and 
secure APIs, to implementing modern application patterns such as event sourcing and 
Command Query Responsibility Segregation (CQRS). We demonstrate different deployment 
options, such as using the administration capabilities within IBM Cloud Pak, deploying 
integration containers in your own cluster, and using the capabilities as managed services 
that are hosted in the cloud.

Chapter 7, “Field notes on modernization for application integration” on page 433 through 
Chapter 9, “Field notes on modernization for messaging ” on page 571 collate field notes that 
are based on the experiences of early adopters of these approaches, which are grouped 
again by application integration, API management, and messaging and events. As expected, 
there is plenty of discussion about the subtleties of migration to containers. So, we also 
describe the practicalities that relate to moving to cloud-native containers, such as changing 
team roles and responsibilities and strategies for testing. 
4 Accelerating Modernization with Agile Integration



Chapter 2. Agile integration

This chapter begins with a brief description of agile integration. It then reviews the 
background of how several enterprises implement a centralized enterprise services bus 
(ESB). Then, it explores how to move forward to a more agile integration landscape that 
better enables a business to compete and potentially disrupt its market segment.

The following topics are covered in this chapter:

� Agile integration: A brief introduction
� The journey so far: SOA, ESBs, and APIs
� Microservices
� The three aspects of agile integration
� People: Decentralized integration ownership
� Architecture: Delivery-focused architecture
� Technology: Cloud-native infrastructure

2

© Copyright IBM Corp. 2020. All rights reserved. 5



2.1  Agile integration: A brief introduction

The pace of innovation in IT has changed dramatically. Iterations on requirements are in near 
real-time, prototypes are prepared in weeks or even days, and new mobile apps are made 
available in months. Application development techniques needed to keep pace by introducing 
new approaches such as microservices that enable teams to work more independently. 

Integration is maturing towards a more API-led approach where interfaces that are easy to 
use enable teams to rapidly share data and functions.

However, there is much more subtlety to this change than is apparent. You must think 
differently about how you align the people and skillsets that relate to integration. You must 
consider how to ensure that integration components embrace new architectural tenets such 
as microservices and that they capitalize on the benefits of new infrastructure platforms such 
as containers. 

As shown in Figure 2-1, agile integration addresses these issues in the detail, looking at how 
to modernize an integration landscape based on people, architecture, and infrastructure. 

Figure 2-1   Three aspects of agile integration

Integration is the secret weapon behind the great innovations of today. Few new ideas are 
stand-alone applications. They always require data and functions from other applications 
within the enterprise and often from other enterprises.

However, the integration challenge is less about low-level connectivity than it is about the 
velocity of change. How quickly can ideas be transformed into production, or at least into 
prototypes, so that new niches can be leveraged?

This process requires highly empowered and autonomous teams that can self-provision the 
integration capabilities that they need wherever they are and still interact efficiently with other 
teams' capabilities.

Decentralized 
ownership

People & Process

Delivery focused 
architecture

Architecture & Design

Cloud native 
infrastructure

Infrastructure and Technology

Agile Integration

Modernizing 
integration to enable 

business agility 

Improve build 
independence and 
production velocity
(deployment agility)

Accelerate agility and 
innovation

(development agility)

Dynamic scalability 
and inherent 

resilience
(operational agility)
6 Accelerating Modernization with Agile Integration



Integration is prominent in enabling the business agility that is required to innovate faster than 
the competition. Agile integration, as shown in Figure 2-1, addresses this need by rethinking 
the approach to integration that is based on people, architecture, and technology. It results in 
a decentralized, microservices-aligned, and portable approach to integration: 

� People and decentralized integration ownership: Improve development agility by 
empowering teams with integration capabilities so that they can innovate in real time.

� Architecture and delivery focused integration architecture: Improve deployment agility by 
using modern architectural and design practices such as API-led or event-driven 
integration with a focus on microservices applications. 

� Technology and a cloud-portable integration infrastructure: Improve operational agility by 
using a platform-neutral and cloud-native approach to integration infrastructure.

We introduce these aspects at a high level in this chapter before going into detail into each one 
in subsequent chapters.

2.1.1  People: Decentralized integration ownership

In the past, a significant challenge for a service-oriented architecture (SOA) was that it tended 
to result in heavily centralized integration teams and a corresponding infrastructure to create 
the service layer. Although centralized teams certainly had their place, for example, making 
governance of quality easier, they also had downsides in terms of their ability to scale.

Because there was a limited set of skilled resources in the organization regarding integration 
technology, all projects depended on this centralized team. Although the team knew their 
integration technology well, they often did not understand the applications they were 
integrating, so conversion requirements might be slow and error-prone.

Many organizations prefer that the application teams own the creation of their own services, 
but the technology and infrastructure at the time did not enable that situation.

Today, organizations are moving to fine-grained integration deployment, which enables the 
distribution of the ownership of the creation and maintenance of the integrations.

With the evolution of integration technologies, it is now perfectly reasonable for business 
application teams to take on integration work and streamline the implementation of new 
capabilities. We describe this topic in 2.5, “People: Decentralized integration ownership” on 
page 21. 

2.1.2  Architecture: Delivery focused integration architecture

In the architectural space, each integration capability contributes differently to improving 
integration agility. 

Consumer-centric API management
An API-led integration strategy for connectivity between applications is now standard. API 
management furthered the ideas in SOA by refining and improving the standards around how 
interfaces are shared between applications and between enterprises in an API economy. A 
key lesson is the importance of creating and exposing APIs based on the needs of the API 
consumer.

APIs are now treated more like products than technical interfaces, so they must be 
marketable and potentially monetized. Promoting APIs by using slick developer portals that 
Chapter 2. Agile integration 7



enable self-subscription and convenient ways to learn and test the interface are critical to the 
success of any API.

In today's multicloud world, it is also critical to be able to administer, catalog, and secure APIs 
from a single place even if they are exposed on many different cloud endpoints, which further 
simplifying the consumer's experience.

Fine-grained application integration
In 2.4, “The three aspects of agile integration” on page 21, you explore why microservices 
concepts are popular in the application space. You see how those principles can be applied to 
the modernization of an integration architecture.

The centralized deployment of an integration hub or ESB pattern, where all integrations are 
deployed to a single, highly available (HA) pair of integration servers, has some benefits in 
terms of consistency, simplicity, and efficiency. However, centralized deployment might 
introduce a bottleneck for projects. Furthermore, any deployment to the shared servers runs a 
risk of destabilizing existing critical interfaces because this deployment is on a single software 
instance, so no individual project can choose to upgrade the version of the integration 
middleware to gain access to new features without impacting others.

You could break up the enterprise-wide ESB component into smaller more manageable and 
dedicated pieces. Perhaps in some cases you can even get down to one run time for each 
interface you expose. These fine-grained integration deployment patterns provide 
specialized, right-sized containers for improved agility, scalability, and resilience, and are 
different than the centralized ESB patterns.

Application-owned messaging and events
Asynchronous communication is even more relevant in today's geographically separated 
distributed solutions: 

� Messaging, which was originally introduced to enable decoupled communication across 
disparate platforms, continues in that mission-critical purpose, but it also now has the 
same role in reliable communication across cloud boundaries. 

� Events provide mechanisms to store an event history, which provides an alternative 
source of information about data changes and enable applications to listen selectively for 
notifications, and build local data stores suited to their needs.

However, it is no longer acceptable to wait on a highly specialized team to provision an 
asynchronous communication infrastructure. Teams must be able to self-provision and 
configure queues and topics for immediate use as part of their event-driven integration 
projects. 

Templated and patternized mechanisms must be introduced to simplify provisioning tasks, 
and where possible provide them in as in-place multi-tenant managed services. The queue 
and topic configurations must be application-owned so that they can produce prototypes and 
iterate on solutions rapidly. 
8 Accelerating Modernization with Agile Integration



2.1.3  Infrastructure aspect: Cloud-portable integration infrastructure

Integration implies that key elements must be able to run on a multitude of different platforms 
to be in proximity to the systems with which they are integrating. As such, the run times that 
are used by these capabilities, whether they are mediation engines, API gateways, or queue 
managers of event brokers, must be designed for the greatest possible portability. They must 
run on a traditional platform and take advantage of cloud-native infrastructure, that is, they 
must be able to hand off the burden of many of their previously proprietary mechanisms for 
cluster management, scaling, and availability to the cloud platform in which they are running. 
This process entails more than running these mechanisms in a containerized environment: 
They must make the best use of the orchestration capabilities, such as Kubernetes (K8s) and 
many other common cloud standard frameworks.

There are multiple benefits of being able to run in a cloud-native style on portable platforms, 
including cost efficiencies from elastic scaling, rationalization of infrastructure skillsets, and 
consumer choice of cloud platforms. 

2.2  The journey so far: SOA, ESBs, and APIs

Before you dive into agile integration, you first must learn more about the background of this 
topic. In this section, we briefly look at the challenges of SOA by taking a closer look at what 
the ESB pattern was, how it evolved, where APIs came onto the scene, and the relationship 
between the pattern and the microservices architecture.

2.2.1  The forming of the ESB pattern

As we started the millennium, we saw the beginnings of the first cross-platform protocol for 
interfaces. The internet and HTTP became ubiquitous, XML was being developed from HTML, 
and the SOAP protocols for providing synchronous web service interfaces were taking shape. 
Relatively wide acceptance of these standards hinted at a future where any system might 
discover and talk to any other system by using a real-time synchronous remote procedure call 
(RPC) without reams of integration code.

From this series of events, SOA was developed. The core purpose of SOA is to expose data 
and functions in systems of record through well-formed, simple-to-use, and synchronous 
interfaces, such as web services. Clearly, SOA was about more than just providing those 
services, and often involved some significant reengineering to align the back-end systems with 
the business needs, but the end goal was a suite of well-defined, common, and reusable 
services collating disparate systems. SOA enabled new applications to be implemented 
without the burden of deep integration every time because after the integration was done for 
the first time and exposed as a service, it could be reused by the next application.

However, this simple integration was a one-sided equation. We might have been able to 
standardize these protocols and data formats, but the back-end systems of record were 
typically old and had antiquated protocols and data formats for their current interfaces. 
Something was needed to mediate between the old system and the new cross-platform 
protocols. 
Chapter 2. Agile integration 9



This synchronous exposure pattern through web services was why ESB was introduced, as 
shown by the upper integration component in Figure 2-2. It is a centralized bus that can 
provide web services across the enterprise.

Figure 2-2   Centralized ESB: No gateway

We already had the technology (the integration run time) to provide connectivity to the 
back-end systems coming from the preceding hub-and-spoke pattern. These integration run 
times could simply be changed to offer integrations synchronously through SOAP and HTTP, 
and we would have our ESB.

2.2.2  What went wrong for the centralized ESB pattern

Although many large enterprises successfully implemented the ESB pattern, the term is often 
disparaged in the cloud-native space,  especially in relation to the microservices architecture. 
It is seen as heavyweight and lacking in agility. What has happened to make the ESB pattern 
appear so outdated?

SOA turned out to be a more complex than just the implementation of an ESB for a host of 
reasons, such as who would fund such an enterprise-wide program. Implementing the ESB 
pattern itself is no small task.

The ESB pattern often took the “E” in ESB literally and implemented a single infrastructure for 
the whole enterprise, or at least one for each significant part of the enterprise. Tens or even 
hundreds of integrations might have been installed on a production server cluster, and if that 
was scaled up, they would be present on every clone within that cluster. Although this heavy 
centralization is not required by the ESB pattern itself, it was almost always present in the 
resultant topology. 

Integration

En
ga

ge
m

en
t

ap
pl

ic
at

io
ns

Sy
st

em
s 

of
 

re
co

rd

Integration
Integration runtime containing 
multiple individual integrations

Application runtime

Exposed API

Asynchronous integration

Request/response integration

API  invocation
10 Accelerating Modernization with Agile Integration



There were good reasons for this situation, at least initially: hardware and software costs were 
shared, provisioning of the servers only had to be performed once, and due to the relative 
complexity of the software, only one dedicated team of integration specialists needed to be 
skilled up to perform the development work.

The centralized ESB pattern had the potential to deliver significant savings in integration 
costs if interfaces could be reused from one project to the next (the core benefit proposition of 
SOA). However, coordinating such a cross-enterprise initiative and ensuring that it would get 
continued funding and that the funding only applied to services that would be sufficiently 
reusable to cover their creation costs proved to be difficult. Standards and tools were 
maturing while the ESB patterns were being implemented, so the implementation cost and 
time for providing a single service were unrealistically high.

Often, line of business (LOB) teams that were expecting a greater pace of innovation in their 
new applications became increasingly frustrated with SOA, and by extension the ESB 
pattern. 

Some of the challenges of a centralized ESB pattern were:

� Deploying changes might potentially destabilize other unrelated interfaces running on the 
centralized ESB.

� Servers containing many integrations had to be kept running and patched live wherever 
possible.

� Topologies for HA and disaster recovery (DR) were complex and expensive.

� For stability, servers typically ran many versions behind the current release of software, 
which reduced productivity.

� The integration specialist teams often did not know much about the applications they were 
trying to integrate.

� Pooling of integration specialists resulted in more waterfall style engagement with 
application teams.

� Service discovery was immature, so documentation quickly became outdated.

The result was that the creation of services by the SOA team was a bottleneck for projects 
instead of an enabler, which decreased the value of the ESB pattern.

The term ESB is an architectural pattern that refers to the exposure of services. Unfortunately, 
the term is often over-simplified and applied to the tools that are used to implement the 
pattern. This situation erroneously ties the static and aging centralized ESB pattern to the 
integration engines that have changed radically over time.

Note: ESB patterns have had issues ensuring continued funding for cross-enterprise 
initiatives because those costs do not apply specifically within the context of a business 
initiative.

Note: A waterfall methodology is where an attempt is made to gather all the 
requirements up front, and then the implementation team works in isolation until they 
deliver the final product for acceptance.
Chapter 2. Agile integration 11



Modern application integration engines are more lightweight, easier to install and use, and 
can be deployed in more decentralized ways. As described in 2.4, “The three aspects of agile 
integration” on page 21, agile integration enables us to overcome the limitations of the ESB 
pattern by using these more modern integration tools in a model that allows for fine-grained 
deployment.

For more information about where the ESB pattern came from, and a detailed look at the 
benefits and the challenges that came with it, see  Digital Developer Conference: AI & Cloud.

2.2.3  The API economy

External APIs are an essential part of the online persona of many companies, and they are at 
least as important as its websites and mobile applications. Let’s take a brief look at how they 
evolved from mature internal SOA-based services.

SOAP-style RPC interfaces are complex to understand and use, and simpler and more 
consistent RESTful services that are provided by using JSON and HTTP became popular. 
But, the goal is the same: Make functions and data available by using standardized interfaces 
so that new applications can be built on top of them more quickly.

With the broadening usage of these service interfaces, more formal mechanisms for 
providing services were required. It quickly became clear that simply making something 
available over a web service interface or as a RESTful JSON and HTTP API was not enough.

The web service needed to be easily discovered by potential consumers who needed a path 
of least resistance for gaining access to it and learning how to use it. Additionally, the 
providers of the service or API needed to be able to place controls on its usage, such as 
traffic control and an appropriate security model. Figure 2-3 on page 12 demonstrates how 
the introduction of service and API gateways affects the scope of the ESB pattern.

[

Figure 2-3   Introducing API management

Integration

Integration Int.

API Management

API Management
Integration runtime containing 
multiple individual integrations

Application runtime

Exposed API

Asynchronous integration

Request/response integration

API  invocation

API GatewayEn
ga

ge
m

en
t

ap
pl

ic
at

io
ns

Sy
st

em
s 

of
 

re
co

rd
12 Accelerating Modernization with Agile Integration

http://ibm.biz/FateOfTheESBPaper


The typical approach was to separate the role of service and API exposure into a separate 
gateway. These capabilities evolved into what is now known as API management and 
enabled simple administration of the service and API. The gateways could also be 
specialized to focus on API management-specific capabilities, such as traffic management 
(rate and throughput limiting), encryption and decryption, redaction, and security patterns. 
The gateways could also be supplemented with portals that describe the available APIs that 
enable self-subscription to use the APIs along with provisioning analytics for both users and 
providers of the APIs.

While logically the provisioning of APIs outside the enterprise looks like just an extension of 
the ESB pattern, there are significant infrastructural and design differences between 
externally facing APIs and internal services and APIs:

� From an infrastructural point of view, it is obvious that the APIs are being used by 
consumers and devices that may exist anywhere from a geographical and network point of 
view. As a result, it is necessary to design the APIs differently to account for the bandwidth 
that is available and the capabilities of the devices that are used as consumers.

� From a design perspective, you should not underestimate the difference in the business 
objectives of these APIs. External APIs are much less focused on reuse, much like internal 
APIs and services were in SOA, and more focused on creating services targeting specific 
niches of potential for new business. Suitably crafted channel-specific APIs provide an 
enterprise with the opportunity to radically broaden the number of innovation partners that 
it can work with (enabling crowd sourcing of new ideas), and they play a significant role in 
the disruption of industries. This realization caused the birth of what we call the API 
economy, which is described in What is an API? and What is the API Economy?

This progression toward more sophisticated API management is for many enterprises still 
very much “in-progress”. Moving to a cloud infrastructure is more than a replatforming 
exercise. By committing to a different way of designing applications along with the move to a 
container infrastructure, you can gain significant benefits in terms of agility, scalability, and 
resilience. A key element of agile integration is to introduce and evolve the use of API 
management with a focus on ensuring the APIs are consumer-centric. The cloud-native 
concept is described in Chapter 4, “Cloud-native concepts and technology” on page 85.

2.3  Microservices

No discussion about the current state of computing is complete without describing 
microservices. What is meant by the term, why is the concept useful, and how does it relate to 
similar sounding terms such as SOA? After you have a clear conceptual understanding of 
microservices, you can then appreciate what effect it might have in the integration space.

2.3.1  The rise of lightweight run times

Earlier, we covered the challenges of the heavily centralized integration run time: It is hard to 
safely and quickly make changes without affecting other integrations, expensive, and complex 
to scale.

These challenges were the same ones that application development teams were facing at the 
same time: The presence of bloated, complex application servers that contained too much 
interconnected and cross-dependent code on a fragile cumbersome topology that was hard to 
replicate or scale.
Chapter 2. Agile integration 13

https://developer.ibm.com/apiconnect/2018/01/04/api-api-economy/


Ultimately, it was this common paradigm that led to the emergence of the principles of 
microservices architecture. As lightweight run times and application servers such as Node.js 
and IBM WebSphere Application Server Liberty were introduced (run times that started in 
seconds and had tiny footprints), it became easier to run them on smaller virtual machines 
(VMs), and then eventually within container technologies such as Docker.

2.3.2  Microservices architecture: A more agile and scalable way to build 
applications

To meet the constant need for IT to improve agility and scalability, a next logical step in 
application development was to break up applications into smaller pieces and run them in 
these new lightweight run times independent of each other. Eventually, these pieces became 
small enough that they were termed microservices. 

If you take a closer look at microservices concepts (Figure 2-4), you see that they are more 
than simply breaking up things into smaller pieces. There are implications for architecture, 
process, organization, and more. Mircroservices are focused on enabling organizations to 
better use cloud-native technology advances to increase their pace of innovation.

Figure 2-4   Microservices in the engagement layer

However, focusing on the core technological difference, these small independent 
microservices components can be changed in isolation to create greater agility, scaled 
individually to better use a cloud-native infrastructure, and managed to provide the resilience 
that is required by 24 x 7 online applications.

Integration

Integration Int.

API Management

API Management

En
ga

ge
m

en
t

ap
pl

ic
at

io
ns

Sy
st

em
s 

of
 

re
co

rd

Silo application runtime

Exposed API

Asynchronous integration

Request/response integration

API  invocation

API Gateway

Microservice application runtimes

Integration runtime containing 
multiple individual integrations
14 Accelerating Modernization with Agile Integration



In theory, these microservices principles can be used anywhere. Where you see them most 
commonly is in the systems of the engagement layer, where greater agility is essential. 
However, they can also be used to improve the agility, scalability, and resilience of a system of 
record or indeed anywhere else in the architecture, as you will see as we describe agile 
integration.

Microservices as an architecture
Microservices is an alternative approach to structuring applications. Rather than an 
application being a large silo of code all running on the same server, an application is 
designed as a collection of smaller, independently running components. It could be described 
as an application architecture. As you see later, this is an important distinction when 
comparing it with SOA.

Microservices components are often made from pure language run times such as Node.js or 
Java, but they can be made from any lightweight run time. The key requirements include that 
they have a simple dependency-free installation, file-system-based deployment, start and 
stop in seconds, and strong support for a container-based infrastructure. 

The microservices architecture enables developers to better use cloud-native infrastructure 
and manage components by providing the resilience and scalability that are required by 24 x 
7 online applications. It also improves ownership in line with DevOps practices where a team 
can take responsibility for a whole microservices component throughout its lifecycle and make 
changes at a higher velocity.

Microservices considerations
As with any new approach, there are challenges that are can be overt or subtle. 
Microservices are a radically different approach to building applications. Here is a brief look at 
some of the considerations:

� Greater overall complexity: Although the individual components are potentially simpler and 
thus easier to change and scale, the overall application is inevitably a collection of highly 
distributed individual parts.

� Learning curve on cloud-native infrastructure: To manage the increased number of 
components, new technologies and frameworks are required, which include service 
discovery, workload orchestration, container management, logging frameworks, and more. 
Platforms are available to make this easier, but it is still a learning curve.

The core benefits of a microservices approach are:

� Greater agility: They are small enough to be understood in isolation and changed 
independently.

� Elastic scalability: Their resource usage can be tied to the business model.

� Discrete resilience: With suitable decoupling, changes to one microservice do not affect 
others at run time.

Note: IBM Cloud Pak for Integration, which is described in Chapter 5.1, “IBM Cloud Pak for 
Integration” on page 144, can fulfill these requirements.
Chapter 2. Agile integration 15



� Different design paradigms: The microservices application architecture requires 
fundamentally different approaches to design. For example, considering the use of eventual 
consistency rather than transactional interactions, or the subtleties of asynchronous 
communication to decouple components.

� DevOps maturity: Microservices require a mature delivery capability. Continuous 
Integration and Continuous Delivery and Deployment (CI/CD) and fully automated tests 
are a must. The developers who write code must be responsible for it in production. Build 
and deployment chains need significant changes to provide the right separation of 
concerns for a microservices environment.

The microservices architecture is not the solution to every problem. Because the 
microservices approach is complex, it is critical to ensure that the benefits that are outlined 
above outweigh the extra complexity. In many cases, existing enterprise solutions can and 
should continue running with a more traditional architecture. The investments have already 
been made in implementing the resiliency and scalability in the unique models of those tools. 
However, for suitably selected new solutions or for pockets of modernization within existing 
systems, microservices can provide an order of magnitude increase in benefits that are hard 
to achieve any other way.

Without question, microservices principles can offer significant benefits under the correct 
circumstances. However, choosing the correct time to use these techniques is critical, and 
getting the design of highly distributed components correct is not a trivial endeavor.

One of your challenges is deciding the shape and size of your microservices components. 
Another one is the design choices around the extent to which you decouple them. You must 
constantly balance practical reality with aspirations for microservices-related benefits. In 
short, your microservices-based application is only as agile and scalable as your design is 
good, and your methodology is mature.

Using microservices techniques in integration
Microservices architecture discussions are often heavily focused on alternative ways to build 
applications, but the core ideas behind it are relevant to all software components, including 
integration. Figure 2-5 shows the fine-grained integration deployment.
16 Accelerating Modernization with Agile Integration



Figure 2-5   Fine-grained integration deployment

Clearly, you want to gain the benefits of agility, scalability, and resilience in your integration 
landscape, so a logical step is breaking up your centralized ESB pattern into separately 
deployable integration units. A complete refactoring to fine-grained integrations might be too 
much for some enterprises, but at least you should consider building new integrations as 
more granular, separately deployable pieces. We describe this topic in 3.2, “Capability 
perspective: Application integration” on page 54.

As you progress through this chapter, we consider how the concepts and techniques behind 
microservices can be used in the breaking up of ESB and the context of API management, 
and asynchronous communication over messaging, events, and files. 

2.3.3  Comparing SOA and the microservices architecture

Microservices inevitably are compared to SOA in architectural discussions because they share 
many terms. However, this comparison is misleading because the terms apply to two different 
scopes. 

API Management

API Management

Ev
en

t s
tr

ea
m

Lightweight integration runtime

Silo application runtime

Exposed API

Asynchronous integration

Request/response integration

API  invocation

API Gateway

Microservice application runtimes

En
ga

ge
m

en
t

ap
pl

ic
at

io
ns

Sy
st

em
s 

of
 

re
co

rd
Chapter 2. Agile integration 17



Figure 2-6 on page 18 demonstrates how microservices principles are application-scoped, but 
SOA is an enterprise-scoped architecture. 

Figure 2-6   Comparing microservices and SOA

SOA is an enterprise-wide initiative to create reusable, synchronously available services and 
APIs, such that new applications can be created more quickly by incorporating data from 
other systems.

However, microservices architecture is an option for how you might choose to write an 
individual application in a way that makes that application more agile, scalable, and resilient.

It is critical to recognize this difference in scope because some of the core principles of each 
approach might be incompatible if applied at the same scope. For example:

� Reuse: In SOA, reuse of integrations is the primary goal, and at an enterprise level, some 
level of reuse is essential. In microservices architecture, creating a microservices 
component that is reused at run time throughout an application results in dependencies 
that reduce agility and resilience. Microservices components generally prefer to reuse 
code by copy and accept data duplication to help improve decoupling between one 
another.

� Synchronous calls: The reusable services in SOA are available across the enterprise by 
using predominantly synchronous protocols such as RESTful APIs. However, within a 
microservices application, synchronous calls introduce real-time dependencies, resulting 
in a loss of resilience, and also latency, which impacts performance. Within a 
microservices application, interaction patterns based on asynchronous communication 
are preferred, such as event sourcing where a publish/subscribe model is used to enable a 
microservices component to remain up to date on changes happening to the data in 
another component.

� Data duplication: A clear aim of providing services in an SOA is for all applications to 
synchronously get hold of, and change data directly at its primary source, which reduces 
the need to maintain complex data synchronization patterns. In microservices 
applications, each microservice ideally has local access to all the data it needs to ensure 
its independence from other microservices, and indeed from other applications, even if 
this means some duplication of data in other systems. Of course, this duplication adds 
complexity, so it must be balanced against the gains in agility and performance, but this is 
accepted as a reality of microservices design.

Application

SOA enables inter-application integration. It is part of enterprise architecture

Application ApplicationApplication

microservice microservice

Microservices guides the 
internal design of an 

application. It relates to 
application architecture.

microservice microservice
18 Accelerating Modernization with Agile Integration



So, in summary, SOA has an enterprise scope and looks at how integration occurs between 
applications. Microservices architecture has an application scope, dealing with how the 
internals of an application are built. This is a relatively swift explanation of a much more 
complex discussion. For more information, see MIcorservices, SOA, and APIs: Friends or 
enemies?

However, you have enough of the key concepts to now delve into the various aspects of agile 
integration.

2.3.4  Bi-modal IT and decentralization

What becomes clear as you read 2.3, “Microservices” on page 13 is a deeper separation 
between the necessarily slower moving back-end systems of record compared to the radical 
agility that is required from the systems of engagement. It is hard to force a back-end system 
of record to move at the pace of innovation. It is much more realistic to enable using of data 
and functions from that system in new business solutions that are focused on a particular 
channel. The separation of these steady-speed and high-speed areas of IT is often termed 
bi-modal or multi-modal in cases where there are several levels of different velocities of 
development.

For the fast moving engagement tier to be successful, its teams must work autonomously and 
make decisions rapidly that are focused primarily on their specific business objective. This is 
clearly challenging in terms of overall governance of IT, but if done well, it can result in a much 
greater velocity of change. This distribution of decision-making power down to autonomous 
teams is known as decentralization, which is shown in Figure 2-7 on page 19.

Figure 2-7   Decentralized integration ownership

APIM APIM

APIM
APIM

APIM APIM

Ev
en

t s
tr

ea
m

Lightweight integration runtime

Silo application runtime

Exposed API

Asynchronous integration

Request/response integration

API  invocation

API Gateway

Microservice application runtimes
Chapter 2. Agile integration 19

http://ibm.biz/MicroservicesVsSoa
http://ibm.biz/MicroservicesVsSoa


Integration can help enable this decentralization in many ways, and also help retain 
distributed governance:

� From an application integration point of view, you can take the fine-grained integration 
deployment a step further and distribute the ownership of integrations to application 
teams. Application integration is described in 3.2, “Capability perspective: Application 
integration” on page 54.

� API management is perfectly aligned to enable teams to administer their own APIs rather 
than needing a central team to perform that role. It can also implicitly enforce 
company-wide standards on how those APIs are exposed to retain consistency. API 
management is described in 3.1, “Capability perspective: API management” on page 42.

� You might choose to use event streams to keep microservices components decoupled 
from back-end systems based on the modern patterns that are used in the microservices 
community, such as event sourcing. Event streams are described in 3.3, “Capability 
perspective: Messaging and event streams” on page 68.

2.3.5  Decentralization and integration versus point-to-point

Centralized integration and ESB patterns were introduced to gain control of the proprietary, 
wasteful, and complex integration that arose from having no common approach to integration. 
So, how is decentralization and fine-grained integration not a point-to-point solution?

Point-to-point solutions had many problems, such as varied interfacing protocols and application 
platforms that did not have the necessary technical integration capabilities. For each 
integration between two applications, you had to write new, complex, and integration-centric 
code for both the service consumer and the service provider.

Now, compare that situation to the modern, decentralized integration pattern. The interface 
protocols are simplified and rationalized such that many provider applications now offer 
RESTful APIs or at least web services, and most consumers are equipped to make requests 
based on those standards.

When applications cannot provide an interface over those protocols, powerful integration tools 
are available to the application teams to enable them to rapidly develop APIs and services by 
using primarily simple configurations and minimal custom code.

Along with wide-ranging connectivity capabilities to both old and new data sources and 
platforms, application integration tools also fulfill common needs such as data mapping, 
parsing and serialization, dynamic routing, resilience patterns, encryption and decryption, 
traffic management, security model switching, identity propagation, and more. All these needs 
are met primarily through simple configuration, which further reduces the need for complex 
custom code.

API-led integration: This is why API-led integration yields such benefits. API-led 
integration allows organizations to easily connect even the most complex systems and the 
consistency that they provide by exposing these endpoints as an API.
20 Accelerating Modernization with Agile Integration



Because of the maturity of the complementary API management tools, you can provide those 
interfaces to consumers and the following functions:

� Make them easily discoverable by potential consumers.
� Enable secure, self-administered onboarding of new consumers.
� Provide analytics to understand usage and dependencies.
� Promote them as externally facing so they can be used by third parties.
� Potentially even monetize APIs by treating them as a product that is provided by your 

enterprise rather than just a technical interface.

In this more standards-based, API-led integration, there is little burden on either side when an 
application wants to use APIs that are offered from another provider application.

Of course, API management is only part of the picture. API management provides the 
standardized, secure, and discoverable exposure of an API, but what if the application in question 
does not provide an API, has the wrong granularity, is overly complicated, or has a complex 
security model? This is where application integration run times help by providing the tools to 
perform deep connectivity, unpick complex protocols, and compose multiple requests to produce 
an API that is appropriate to expose through an API management layer.

It is not point-to-point because this integration and surfacing of the API is done only once on 
the provider side for a capability. It can then be reused easily by multiple consumers, and its 
usage can be monitored and controlled in a standardized way.

2.4  The three aspects of agile integration

Over the next few sections, you explore agile integration based on its effects on people, 
architecture, and infrastructure:

� People - Decentralized integration ownership: Improve development agility by empowering 
teams with integration capabilities so that they can innovate in real time.

� Architecture - Delivery focused integration architecture: Improve deployment agility by 
using modern architectural and design practices such as API-led integration, 
microservices, and event-driven applications apply to integration. 

� Infrastructure - Cloud portable integration infrastructure: Improve operational agility by 
using a platform-neutral, cloud-native approach to integration infrastructure.

2.5  People: Decentralized integration ownership

Any significant change must start with people. If the people are not aligned with a new way of 
working, they rapidly slip back into the old way of doing things. As ever, you can refer right 
back to Conway's Law (circa 1967): If we're changing the way we architect systems and we 
want it to stick, we also need to change the organizational structure.1

Look at how enterprises are typically aligned from an integration perspective, then consider 
how you might progressively change them to a more agile approach. Although we propose an 
alternative model to centralized technology teams, we recognize that this model may not be 
right for all enterprises, and even within any enterprise it might be right only for some parts of 
that organization.

1  Conway’s law 
Chapter 2. Agile integration 21

https://en.wikipedia.org/wiki/Conway%27s_law


Figure 2-8 on page 22 shows how in a traditional SOA architecture people are centralized into 
teams that are aligned to their technology stack.

Figure 2-8   Centralized teams

A high-level organizational chart has the following characteristics:

� A front-end team, which focuses on user experience and creating UIs.

� An ESB team, which focuses on looking at existing assets that can be provided as 
enterprise assets. This team also focuses on creating the services that support the UIs 
from the front-end team.

� A back-end team, which focus on the implementation of the enterprise assets that are 
surfaced through the ESB. There are many teams here working on many different 
technologies. Some might provide SOAP interfaces that are created in Java, some provide 
COBOL copybooks that are delivered over IBM MQ, others create SOAP services that are 
exposed by the mainframe, and so on.

This is an organizational structure with an enterprise focus so that a company can rationalize 
its assets and enforce standards across a large variety of assets. The downside of this focus 
is that time to market for an individual project is compromised for the good of the enterprise.

A simple example of structure is a front-end team that wants to add a single new element to 
their screen. If that element does not exist on an existing SOAP service in the ESB, then the 
ESB team must be engaged, which impacts the back-end team, who also must make a 
change. The code changes at each level are simple and straightforward so that is not the 
problem.

Integration
22 Accelerating Modernization with Agile Integration



The problem is allocating the time for developers and testers to work on it. The project 
managers must get involved to figure out who on their teams have the capacity to add the 
new element and how to schedule the push into the various environments. If you scale out, 
you also have competing priorities. Each project and new element must be vetted and 
prioritized, and this takes time. So, you are in a situation where there is much impact in terms 
of time for a simple and straightforward change.

The question is whether the benefits that you get by doing governance and creating common 
interfaces is worth the price you pay for the operational challenges. In the modern digital 
world of fast-paced innovation, you must think of a new way to enforce standards while 
allowing teams to reduce their time to market.

2.5.1  Moving to a decentralized and business-focused team structure

You are trying to reduce the time between the business “ask” and production implementation, 
knowing that you may rethink and reconsider how you implement the governance processes 
that were in place. Let’s now consider the concept of microservices, where you have broken 
down your technical assets into smaller pieces. If you do not consider reorganizing, you might 
make it worse. You introduce even more handoffs as the lines of what is an application and 
who owns what blur. You need to rethink how you align people to technical assets. Figure 2-9 
on page 23 gives you a preview of what that new alignment might look like.

Figure 2-9   Decentralized teams

Instead of people being centrally aligned to the area of the architecture they work on, they are 
decentralized and aligned to business domains. In the past, you had a front-end team, 
services teams, back-end teams and so on. Now, you have many business teams, for 
example, an account team that works on anything that is related to accounts regardless of 
whether or the accounts involve a REST API, a microservice, or a user interface.

The teams must have cross-cutting skills because their goal is to deliver business results, not 
technology. To create that diverse skill set, it is natural to start by picking one person from the 
old ESB team, one person from the old front-end team, and another from the back-end team.
Chapter 2. Agile integration 23



You do not have to do a massive reorg across the entire enterprise: You can do it application 
by application and piece by piece.

2.5.2  Big bangs generally lead to big disasters

The concept of “big bangs generally lead to big disasters” is not applicable to only code or 
applications. It is applicable to organizational structure changes. An organization’s landscape 
is a complex heterogeneous blend of new and old. It might have a “move to cloud” strategy, 
but is also contains stable heritage assets. The organizational structure continues to reflect 
that mixture. Few large enterprises have the luxury of shifting entirely to a decentralized 
organizational structure, and it is not wise to do so.

For example, if there is a stable application and there is nothing major on the roadmap for that 
application, it does not make sense to decompose that application into microservices or 
reorganize the team working on that application.

Decentralization need only occur where the autonomy it brings is required by the organization 
to enable rapid innovation in a particular area.

We certainly do not anticipate reorganization at a company level in its entirety overnight. The 
point here is that as the architecture evolves, so should the team structure working on those 
applications and the integration among them. If you look into the concerns and motivations of 
the people that are involved, they fall into two different groups, as shown in Figure 2-10.

Figure 2-10   Different needs, and different motivations

If the architecture for an application is not changing and not foreseen to change, there is no 
need to reorganize the people working on that application. However, if you are targeting a 
significant increase in velocity of changes to production, then both the technology and the 
associated team structure must change. 

Integration

API Management

API Management

En
ga

ge
me

nt
ap

pli
ca

tio
ns

Sy
ste

ms
 of

 
re

co
rd

APIM APIM

Sa
aS

 
Ap

pli
ca

tio
ns

iPaaS

APIM

Mi
cro

se
rvi

ce
ap

pli
ca

tio
ns Agility

Velocity
Autonomy 
Freemium

Cloud native
Vendor agnostic

Developer is king
Rapid prototyping

Short learning curve

Can I start small? 
Can it help me 

today? What do my 
peers think of it? 

Does it have an 
active community? 

Are my skills 
relevant

Re-use
Quality
Stability
Support
Monitoring
Governance
Performance
Fixed requirements

What’s its track
Record? Is the 
vendor trustworthy? 
Will it serve me long 
term? What do the 
analysts think of it? 
Could I get sacked 
for a risky choice?
24 Accelerating Modernization with Agile Integration



2.5.3  Decentralized integration ownership and decentralized infrastructures

To reiterate, decentralized integration is primarily an organizational change, not a technical 
one. But does decentralized integration imply an infrastructure change? Possibly, but not 
necessarily.

The move toward decentralized ownership of integrations and their exposure does not 
necessarily imply a decentralized infrastructure. Although each application team clearly could 
have its own gateways and container orchestration platforms, it is not a certainty. The 
important thing is that they can work autonomously.

API management is commonly implemented with a shared infrastructure (an HA pair of 
gateways and a single installation of the API management components) with each 
application team directly administering their own APIs as though they had their own 
individual infrastructure. The same implementation can be done with the integration run 
times by having a centralized container orchestration platform on which they can be deployed 
and giving application teams the ability to deploy their own containers independently of other 
teams.

2.5.4  Prioritizing project delivery first

Now let us consider what this change does to an individual and what they are concerned 
about.

The first thing that you notice about the next diagram is that it shows both old and new 
architectural styles. This is the reality for most organizations. There are many existing 
systems that are older and more resistant to change, but are critical to the business. Although 
some of them might be partially or even completely reengineered or replaced, many remain 
for a long time. In addition, there is a new wave of applications being built for agility and 
innovation by using architectures such as microservices. There will be new cloud-based 
software-as-a-service (SaaS) applications being added to the mix too.

If you look into the concerns and motivations of the people that are involved, they fall into two 
different groups. A developer of traditional applications cares about stability and generating 
code for reuse and doing a large amount of up-front due diligence, but the agile teams have 
shifted to a delivery focus. Now, instead of thinking about the integrity of the enterprise 
architecture first and being willing to compromise on the individual delivery timelines, they are 
thinking about delivery first and willing to compromise on consistency.

Let’s view these two conflicting priorities as two ends of a pendulum. There are negatives at 
the extreme end on both sides. On one side, you have analysis paralysis where all you are 
doing is talking and thinking about what you should be doing. On the other side, you have the 
wild west where all you are doing is blindly writing code with no direction or thought towards 
the longer-term picture. Neither side is correct, and both have grave consequences if allowed 
to slip too far to one extreme or the other. 

Note: Agile teams are more concerned with the project delivery than they are with the 
enterprise architecture integrity.
Chapter 2. Agile integration 25



There are several questions to consider: 

� If you broke your teams into business domains and they are enabled and focused on 
delivery, how do you get some level of consistency across all the teams? 

� How do you prevent duplicated effort? 

� How do you gain some semblance of consistency and control while still enabling speed to 
production? 

2.5.5  Evolving the role of the architect

The answer is to consider the architecture role. In the SOA model, the architecture team 
makes decisions in isolation. In agility integration, the architects are role-practicing architects. 
An example is shown in Figure 2-11 on page 26. 

Figure 2-11   Guilds for governance

You have many teams and some of the members have a dual role. On one side, they are 
expected to be an individual contributor on the team, and on the other side they sit on a 
committee (or guild) that rationalizes what everyone is working on. They are creating common 
best practices from their work. They are creating shared frameworks, and sharing their 
experiences so that other teams do not blunder into traps they already encountered. In the 
SOA world, it was the goal to stop duplication and enforce standards before development 
started. In this model, the teams are empowered and the committee or guild’s responsibility is 
to raise, address, and fix cross-cutting concerns during application development.

If there is a downside to decentralization, it is how to govern the multitude of different ways 
that each application team might use the technology. You encourage standard patterns of use 
and best practices, but autonomy can lead to divergence anyway.
26 Accelerating Modernization with Agile Integration



If every application team creates APIs in their own style and convention, it can become 
complex for consumers who want to reuse those APIs. With SOA, attempts were made to 
create rigid standards for every aspect of how the SOAP protocol would be used, which 
inevitably made them harder to understand and reduced adoption. With RESTful APIs, it is 
more common to see convergence on conventions rather than hard standards. Either way, the 
need is clear: Even in decentralized environments, you still need to find ways to ensure an 
appropriate level of commonality across the enterprise. Of course, if you are already exploring 
a microservices-based approach elsewhere in your enterprise, then you are familiar with the 
challenges of autonomy.

Therefore, the practicing architect is now responsible for knowing and understanding what the 
committee has agreed to, encouraging their team to follow the governance guidelines, 
bringing up cross-cutting concerns that their team has identified, and sharing what they are 
working on. This role must be an individual contributor on one of the teams so that they feel 
the pain or benefit of the decisions made by the committee.

2.5.6  Automation: The key to consistency in decentralization

With the concept of decentralization comes a natural skepticism over whether the committee’s 
influence is persuasive enough to enforce the standards they agreed to. Embedding the 
practicing architect into the team might not be enough.

Let’s consider how the traditional governance cycle often occurs. It often involves the application team 
working through complex standards documents and having meetings with the governance board 
before the intended implementation of the application to establish agreement. Then, the application 
team proceed to development activities, normally beyond the purview of the governance team. On or 
near completion and close to the agreed production date, a governance review occurs.

Inevitably, the proposed project architecture and the actual resultant project architecture will 
be different. If the architecture review board had an objection, there almost certainly is not 
time to resolve it. Except for extreme issues (such as a critical security flaw), the production 
date typically goes ahead, and the technical debt is added to an ever-growing backlog.

Placing practicing architects in the teams encourages alignment. However, the architect is 
now under project delivery pressure, which might mean that they fall into the same trap as the 
teams originally did where they sacrifice alignment to hit deadlines. What more can you do 
with the practicing architect role to encourage the enforcement of standards?

The key ingredient for success in modern agile development environment is automation: 
automated build pipelines, automated testing, automated deployment, and more. The 
practicing architect must be actively involved in ways to automate the governance, which 
might be anything, such as automated code review, templates to build pipelines, or standard 
Helm charts to ensure that the target deployment topologies are homogeneous even though 
they are independent. In short, the focus is on enforcement of standards through frameworks, 
templates, and automation rather than through complex documents and review processes. 
Although the idea of using the technology to enforce standards is not new, the proliferation of 
open standards in the DevOps tool chain and cloud platforms in general is making it much 
more achievable.

Note: The practicing architect is now responsible for the execution of the individual team 
missions and the related governance requirements that cut across the organization.
Chapter 2. Agile integration 27



Let’s start with an example. Say that you have microservices components that issue HTTP 
requests. For every HTTP request, you want to log, by using a common format, how long that 
HTTP transaction took and the HTTP response code. Now, if every microservice did this 
differently, there would not be a unified way of looking at all traffic. Another role of the 
practicing architect is to build helper artifacts that are used by the microservices. Instead of 
the governance process being a gate, it is an accelerator because the architects are 
embedded in the teams, and work on code alongside of them. Now, the governance cycle is 
done with the teams, and instead of reviewing documents, the code is the document and the 
checkpoint is to make sure that the common code is being used.

Not all teams are created equally. Some teams are creaking APIs like a factory, some are 
thinking ahead to upcoming challenges, and some teams are a mix of the two. An advanced 
team that succeeds in finding a way to automate a particular governance challenge is a much 
more successful evangelist for that mechanism than any attempt to create it by a separate 
governance team.

Regarding the technical architect, it might seem that they have too many responsibilities. 
They are responsible for application delivery and a part of the committee, and now you are 
adding the additional responsibility of writing common code that is to be used by other 
application development teams. Is it too much?

A common way to offload some of that work is to create a dedicated team that is under the 
direction of the practicing architect who is writing and testing this code. The authoring of the 
code is not a huge challenge, but the testing of that common code is. The reason for placing a 
high value on testing is because of the potential impact to break or introduce bugs into all the 
applications that use that code. For this reason, extra due diligence and care must be taken to 
justify the investment in the additional resource allocation.

Your aim should be to ensure that general developers in the application teams can focus on 
writing code that delivers business value. With the architects writing or overseeing common 
components that naturally enforce governance concerns, the application teams can spend 
more of their time on value and less in governance sessions. Governance based on complex 
documentation and heavy review procedures is rarely adhered to consistently, but inline tools 
that are based on standardization happen more naturally.

2.5.7  Producing multi-skilled developers

Developers are expected and encouraged to be full stack developers and solve the business 
problem with whatever technology is required. This situation puts an incredible strain on each 
individual developer in terms of the skills that they must acquire. It is not possible for the 
developer to know every detail of each technology, so the infrastructure learning curve suffers. 
You are finding better ways to make infrastructural concerns the same among all products.

In the pre-cloud days, developers had to learn multiple aspects of each technology, as shown in 
Figure 2-12 on page 29.
28 Accelerating Modernization with Agile Integration



Figure 2-12   Changing skillset requirements

Each ellipse represents an area that the developer had to know and care about and 
understand the implications of their code on. They had to know for each technology how to 
install it; how many resources it needed; how to cater for HA, scaling, and security; how to 
create the artifacts; how to compile and build them; where to store them; how to deploy them; 
and how to monitor them at run time. All of these aspects were unique and specific to each 
technology, which means that you had to have technology-specific teams.

However, the common capabilities and frameworks of typical cloud platforms attempt to take 
care of many of those concerns in a standardized way so that the developer can focus on 
what their team is responsible for, which is delivering business results by creating artifacts.

The gray area represents areas that still need to be addressed but are now no longer at the 
front of the developer’s mind. Standardized technology such as (Docker) containers, 
orchestration frameworks such as K8s, and routing frameworks such as Istio enable 
management of run times in terms of scaling, HA, deployment, and so on.

Furthermore, standardization in the way products present themselves by command-line 
interfaces (CLIs), APIs, and simple file system-based installation and deployment means that 
standard tools can be used to install, build, and deploy.

Artifacts

Resources

Security

Operations

Routing

Deployment

Delivery

Artifacts

Resources

Security

Operations

Routing

Deployment

Delivery

Note: With decentralization, developers can focus on what their team is responsible for, 
which is delivering business results by creating artifacts.
Chapter 2. Agile integration 29



2.5.8  Conclusions on decentralized integration ownership

Decentralization does not fit every situation. It might work for some or parts of some 
organizations, but not for others. Application teams for older applications might not have the 
correct skill sets to take on the integration work. Integration specialists might need to be 
seeded into their team. This approach is a tool for potentially creating greater agility for 
change and scaling, but what if the application has been largely frozen for some time?

At the end of the day, some organizations find it more manageable to retain a more 
centralized integration team. The decentralized approach should be applied where the benefits 
are needed the most. That said, this style of decentralized integration is what many 
organizations and indeed application teams have always wanted to do, but they might have 
had to overcome certain technological barriers first.

The core concept is to focus on delivering business value and a shift from a focus on the 
enterprise to a focus on the developer. This concept has manifested in the movement from 
centralized teams to more business-specific ones, but also by more subtle changes such as 
the role of a practicing architect.

This concept is also rooted in technology improvements that are taking concerns away from 
the developer and dealing with them uniformly by using a cloud platform.

2.6  Architecture: Delivery-focused architecture

In agile integration, the architectural patterns are tuned towards enabling the business to 
deliver changes to production robustly at high velocity with an optimal use of resources. The 
integration occurs differently depending on each of the integration capabilities of API 
management, application integration, and events and messaging. Each capability changed to 
complement the other aspects of decentralized ownership and capitalize on cloud-native 
infrastructure. 

Figure 2-13 on page 30 shows a summary of delivery-focused architecture concerns.

Figure 2-13   Summary of delivery-focused architecture concerns

Delivery-focused architecture
Isolated provisioning, container ready, cloud-native runtime

Architecture 
& Design

API led
Microservices
Cloud-native
Event driven

Consumer centric
API Management

API socialization
Federated gateways

Fine grained 
Application Integration

Isolated deployment
Pipeline automation

Self-provisioned
Multi-cloud communication
30 Accelerating Modernization with Agile Integration



2.6.1  Consumer-centric API management

The need to standardize the way applications interact with one another has been maturing for 
decades. We are now at a point where common standards, mostly based on the OpenAPI 
specification, are becoming almost ubiquitous for new interfaces.

However, to simply provide a technical interface, such as an API or a web service, is not 
enough to ensure that you get good value from it. You need a consumer-centric approach. 
You must ensure that the API is easy to find and appealing to use. The API should be treated 
more like a product that you want to market rather than a technical asset. This approach is 
clear for APIs that are exposed externally to the organization, and even monetized to create a 
source of revenue for the company.

However, you should also take a similar approach to APIs within the organization. APIs from 
one part of the organization should make themselves as appealing as possible to consumers 
from other parts of the organization. From a technical standpoint, to enable this 
consumer-centric approach, you an API management capability.

API socialization
A key element of how you make APIs more consumer-centric is how you socialize them. 
Consumers of the interface must be able to easily discover it and subscribe to it. Providers 
must know who is using it and control their behavior. The broader business must have 
confidence that the API usage is suitably secured for each consumer group, and they might 
also want to monetize it in various ways. With API management, decentralized teams can 
administer their own APIs and provide consumers with developer portals for discovery and 
self-subscription. 

Federated gateways
The implementations behind APIs are in many different platforms that potentially are in 
different clouds, and can even be run and managed by different cloud vendors. Although it 
might sometimes be possible to have a single gateway (for example, behind the firewall and 
used for internal APIs) route to all these different places, at a certain scale it becomes more 
appropriate to let each cloud location have its own gateway facility. However, to remain 
consumer-centric, you need to ensure a single point for discovery and subscription. 

Furthermore, you want to ensure that you have consistent governance of APIs across all 
gateways, especially in terms of security policies. So, you need a topological model where the 
socialization aspects of APIs are provided by centralized, multi-tenant components but this 
centralized infrastructure controls many separate federated gateways. With this mode, you 
have the ideal balance between consumer convenience, physical optimization, and consistent 
governance.

Conclusions on consumer-centric API management
APIs are products that are marketed by the company providing them. For many companies, 
they are now more important than their traditional web presence. API management 
capabilities provide a set of features that focus on how APIs are exposed, and are 
fundamentally targeted at improving the experience for the consumer. However, you need an 
effective API strategy to ensure that the right APIs are chosen and are designed in a way that 
makes them attractive to potential consumers.

Moving to a cloud infrastructure is more than just a replatforming exercise. By committing to a 
different way of designing applications along with the move to a container infrastructure, you 
can gain significant benefits in terms of agility, scalability, and resilience. For more 
information, see Chapter 4, “Cloud-native concepts and technology” on page 85.
Chapter 2. Agile integration 31



2.6.2  Fine-grained application integration

If the large centralized ESB pattern containing all the integrations for the enterprise is 
reducing agility, then why not break it up into smaller pieces? If it makes sense to build 
applications in a more granular fashion (for example, microservices), why not apply this idea 
to integration too? You could break up the enterprise-wide centralized ESB component into 
smaller, more manageable, and dedicated components. You might even be able to break it 
down to one integration run time for each interface you expose, although in many cases it is 
sufficient to group the integrations per component.

Fine-grained integration deployment draws on the benefits of a microservices architecture, 
that is, agility, scalability, and resilience:

� Greater agility: Different teams can work on integrations independently without deferring to 
a centralized group or infrastructure that can become a bottleneck. Individual integration 
flows can be changed, rebuilt, and deployed independently of other flows, enabling safer 
application of changes and maximizing speed to production.

� Elastic scalability: Individual flows can be scaled on their own so that you can take 
advantage of efficient elastic scaling of cloud infrastructures.

� Discrete resilience: Isolated integration flows that are deployed in separate containers 
cannot affect one another by stealing shared resources, such as memory, connections, or 
processors. 

Figure 2-14 on page 32 shows the result of breaking up the ESB into separate, independently 
maintainable and scalable components.

Figure 2-14   Breaking up the ESB

Integration

Sy
st

em
s 

of
 

re
co

rd

Centralized 
ESB

Fine-grained 
integration deployment

En
ga

ge
m

en
t

ap
pl

ic
at

io
ns

API Management
32 Accelerating Modernization with Agile Integration



The heavily centralized ESB pattern can be broken up in this way, and so can the older 
hub-and-spoke pattern. This change makes each individual integration easier to change 
independently, and improves agility, scaling, and resilience. 

With this approach, you can change to an individual integration with complete confidence that 
you will not introduce any instability into the environment on which the other integrations are 
running. You can choose to use a different version of the integration run time, perhaps to take 
advantage of new features, without forcing a risky upgrade to all other integrations. You can 
scale up one integration independently of the others, making efficient use of the 
infrastructure, especially when using cloud-based models.

There are considerations with this approach, such as the increased complexity. Also, although 
this result can be achieved by using VM technology, it the long-term benefits are greater if you 
use containers such as Docker and orchestration mechanisms such as K8s. Introducing new 
technologies to the integration team adds a learning curve. However, these challenges are 
the same ones that an enterprise already faces if they are exploring microservices 
architecture in other areas so that expertise might exist within the organization.

We typically call this pattern fine-grained integration deployment (a key aspect of agile 
integration) to differentiate it from other microservices application architectures. We also want to 
distinguish it from ESB, which is associated with the centralized integration architecture.

Conclusion on fine-grained integration deployment
With fine-grained deployment, you can reap some of the benefits of microservices 
architecture in your integration layer by enabling greater agility because of infrastructural 
decoupled components, elastic scaling of individual integrations, and an inherent 
improvement in resilience from greater isolation. For more information, see 3.2, “Capability 
perspective: Application integration” on page 54.

2.6.3  Application-owned messaging and events

Synchronous interaction patterns over HTTP are ubiquitous both within the enterprise and 
across the internet. From an application architecture point of view, assume that the 
infrastructure for them is present. However, this situation is still not true for asynchronous 
patterns that use events and messaging.

Asynchronous communication typically requires the storage of state for a period, and 
someone must own the storage of that state. For these reasons, asynchronous 
communication is not as commonly available as stateless HTTP communications. 
Asynchronous patterns must be supported by explicitly installed and managed components, 
which has been an inhibitor to agility in the past.

It was a relatively expensive and specialist task to configure and administer these 
asynchronous communication infrastructures. They tended to be centrally owned, and even 
the provisioning of a new queue or topic might involve specialists. This situation does not 
work efficiently with a decentralized and agile development where teams want to be 
self-sufficient.

Note: With fine-grained integration deployment, you can change an individual integration 
with complete confidence that you will not introduce any instability into the environment.
Chapter 2. Agile integration 33



Self-provisioning
Asynchronous communication capabilities must be reengineered to radically change the way 
they can be provisioned and maintained so that an application team that requires a queue or 
a new event topic can create one themselves and make it part of their pipeline.

Multi-tenant
Despite the fact that you are aiming for greater team autonomy, it does not necessarily follow 
that there must be separate application-owned infrastructure components. There are still 
options so that you can best use the underlying resources. Technically, you may create a 
fresh infrastructure for the queues and topics that are needed by an application, but that 
makes sense only at a certain scale. You also must be able to provision these capabilities 
easily on a multi-tenant infrastructure, whether self-managed, cloud-managed, or even on an 
appliance. Having a choice of consistency is critical to meet the different needs of the 
applications.

Multicloud 
This multi-tenant aspect becomes more important in a multicloud environment where 
asynchronous communication is required among many different cloud domains that are run 
by different cloud vendors. Being able to use capability on any cloud makes it easier to rapidly 
satisfy the needs of teams, projects, and solutions that are distributed across multiple cloud 
domains.

Conclusions on application-owned messaging and events
The focus for events and messaging is on enabling them to be more application-owned 
capabilities that can be self-provisioned and self-administered by the application teams 
themselves.

There is still a place for centrally provisioned messaging and events infrastructure, such as for 
high-performance and critical use cases. In these cases, the goal is to use those same 
self-provisioning features to automate the standardized aspects of this role by using 
templates so that more time can be spent on more critical activities such as performance 
turning.

For more information, see 3.3, “Capability perspective: Messaging and event streams” on 
page 68.

2.6.4  Conclusions on delivery-focused architecture

In each technology area, you saw that the architectural choices must be heavily centered on 
how to ensure more effective delivery of solutions:

� APIs are built with the needs of consumers in mind, not just as technical interfaces.

� Integrations are fine-grained so that they can be built and deployed in isolation.

� Messaging and events capabilities are self-provisionable by application teams.
34 Accelerating Modernization with Agile Integration



2.7  Technology: Cloud-native infrastructure

To be effective in moving to an agile integration, you must take full advantage of the advances 
in modern infrastructure platforms. They can provide significant benefits in the efficiency of 
resources long term, and they offer superior approaches to the deployment and management 
of components. 

Cloud in this context can be misleading because it does not necessarily imply deployment to 
a public cloud infrastructure. The core difference is that in this case you are building highly 
stateless, disposable, and lightweight components. This design ensures that cloud-style 
infrastructures such as containers and potentially serverless can provide maximum benefit.

This is not just a replatforming exercise: It means building components differently. You are 
using a cloud-native approach to the design and configuration of components that you deploy.

2.7.1  Virtual machines, containers, and serverless

Containers are the most common approach to software virtualization for new solutions, but 
they are a step within a longer evolution. 

Virtualization hides software from its physical computing environment by putting it into a 
software wrapper, which makes it more portable. Virtualization began with the abstraction of 
operating systems from the hardware on which they run (VMware). The provisioning of 
infrastructure by using VMs is ubiquitous, and it is now the exception for software to be 
installed directly on baremetal servers. Containers take virtualization further by enabling a 
more fundamental abstraction from the underlying infrastructure and providing a more 
lightweight and portable virtualization model.
Chapter 2. Agile integration 35



You should expect to see this journey towards greater abstraction from the operating system 
too (as provided by containers). As shown in Figure 2-15, abstraction will continue to the point 
where you abstract the visibility of the language and product run times themselves, as in 
serverless computing or function-as-a-service (FaaS).

Figure 2-15   The road to containers

We dedicate several sections to container technology in 2.7.2, “Cloud-native approach” on 
page 36, so for now we describe the cloud-native approach. 

2.7.2  Cloud-native approach

Cloud-native is a collection of common practices for creating agile, scalable, and resilient 
applications. Some of the key practices are: 

� Modular components 
� Stateless components 
� Image-based deployment 
� Lightweight run times 
� Elastic, agnostic infrastructure 
� Log-based monitoring    
� API-led intra-app communication 
� Event-driven architecture 
� Agile methods 
� CI/CD 
� DevOps 

Chapter 4, “Cloud-native concepts and technology” on page 85 describes these concepts, so 
here we describe a common analogy that is used to articulate the behavior of components 
that are designed in a cloud-native style. 

Functions
36 Accelerating Modernization with Agile Integration



Livestock not pets
Let’s take a brief look at where the concept of livestock not pets came from before we describe 
how to apply it in the integration space.

When servers took weeks to provision and minutes to start, it was fashionable to boast about 
how long you could keep your servers running without failure. Hardware was expensive, and the 
more applications that you could pack onto a server, the lower your running costs were. HA was 
handled by using pairs of servers, and scaling was vertical by adding more cores to a machine. 
Each server was unique, precious, and treated like a pet.

Times changed, and hardware is now virtualized. With container technologies such as 
Docker, you can reduce the surrounding operating system to a minimum so that you can start 
an isolated process in seconds at most.

Using a cloud-based infrastructure, scaling can be horizontal by adding and removing servers 
or containers and adopting more cost-effective pricing models. You can now deploy thin 
slivers of application logic on minimalist run times into lightweight independent containers. 
Furthermore, rather than running a pair of servers as with traditional HA, it is trivial to run 
many servers in containers to limit the effects of one container failing. By using container 
orchestration frameworks such as K8s, you can introduce or dispose of containers rapidly to 
scale up or down workload. These containers are treated more like a herd of livestock.

Integration pets: The traditional approach
Let’s examine what the common “pets” model looks like. In the analogy, if you view a server 
(or a pair of servers that attempt to appear as a single unit) as indispensable, it is a pet. In the 
context of integration, this concept is similar to the centralized integration topologies that the 
traditional approach used to solve enterprise application integration (EAI) and SOA use 
cases.

Table 2-1 on page 37 shows the characteristics of pets.

Table 2-1   Characteristics of pets

Note: This phrase often is referred to as the cattle not pets approach. However, because 
cows are considered sacred in some cultures, in this book we have chosen to use the term 
“livestock” in place of cattle to refer to animals reared in large herds rather than nurtured 
individually.

Characteristics of 
pets

How they are applied to a centralized or traditional integration context

Manually built Integration hubs are often built only one time in the initial infrastructure 
stage. Scripts help with consistency across environments, but are mostly 
run manually. 

Managed The hub and its components are directly and individually monitored during 
operation with role-based access control (RBAC) to allow administrative 
access to different groups of users.
Chapter 2. Agile integration 37

http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle


Table 2-2 shows the characteristics of livestock.

Table 2-2   Characteristics of livestock

2.7.3  Portability: Public, private, and multicloud

One of the major benefits of using a cloud-native architecture is portability. The goal of many 
organizations is to run containers anywhere and move freely between a private cloud, various 
vendors of a public cloud, or a combination of them.

Cloud-native platforms must ensure compatibility with standards such as OpenAPI, Docker, 
and K8s if this portability is to be a reality for consumers. Run times must be designed to take 
full advantage of the standardized aspects of the platforms.

An example might be data security. Assume that a solution has sensitive data that must 
remain on-premises at this point. However, regulations and cloud capabilities might mature 
such that it might move off-premises at some point. If you use cloud-native principles to 
create your applications, then you have much greater freedom to run those containers 
anywhere.

Other examples might include development and testing in one cloud environment and 
production in a different one, or using a different cloud vendor for a DR facility.

Whatever the reason, we are at a point where applications can be more portable than ever 
before. And this fact also applies to the integrations that enable us to use their data.

Hand-fed The hub is nurtured over time, for example, by introducing new integration 
applications, and changes to OS and software maintenance levels. As part 
of this process, new options and parameters are applied, changing the 
overall configuration of the hub. Thus, even if the server started out being 
based on a defined pattern, gradually the running instance becomes more 
bespoke with each change in comparison to the original installation.

Server pairs Typically, pairs of nodes provide HA. Great care is taken to keep these pairs 
running and back up the evolving configuration. Scalability is 
coarse-grained and achieved by creating more pairs or adding resources so 
that existing pairs can support more workloads.

Characteristics of 
livestock

How they are applied to an agile integration context

Elastic scalability Integrations are scaled horizontally and allocated on demand in a cloud-like 
infrastructure.

Disposable and 
recreatable

Using lightweight container technology encourages changes to be made by 
redeploying amended images rather than by nurturing a running server.

Starts and stops in 
seconds

Integrations are run and deployed as more fine-grained entities and take less 
time to start.

Minimal 
interdependencies

Unrelated integrations are not grouped. Functional and operational 
characteristics create colocation and grouping.

Infrastructure as code Resources and code are declared and deployed together.

Characteristics of 
pets

How they are applied to a centralized or traditional integration context
38 Accelerating Modernization with Agile Integration



These integrations must be deployable to any cloud infrastructure and enable the secure and 
efficient spanning of multiple cloud boundaries.

2.7.4  Conclusion on cloud-native integration infrastructure

Moving to a cloud infrastructure is more than a replatforming exercise. By committing to a 
different way of designing applications along with a move to a container infrastructure, you 
can gain significant benefits in terms of agility, scalability, and resilience. For more information 
about cloud-native, see Chapter 4, “Cloud-native concepts and technology” on page 85.
Chapter 2. Agile integration 39



40 Accelerating Modernization with Agile Integration



Chapter 3. Agile integration: Capability 
perspectives

This chapter describes agile integration from the perspective of the integration capabilities: 
API management, application integration, and messaging and events. You see how the 
concepts that are described in Chapter 2, “Agile integration” on page 5 fit into each of these 
technology areas.

The following topics are covered in this chapter:

� Capability perspective: API management
� Capability perspective: Application integration
� Capability perspective: Messaging and event streams
� Capability perspective: Files and Business-to-Business
� Hybrid and multicloud considerations
� Use cases driving hybrid and multicloud adoption

3

© Copyright IBM Corp. 2020. All rights reserved. 41



3.1  Capability perspective: API management

Let’s briefly consider how API management (or sometimes called Full Lifecycle API 
management) relates to the three aspects of agile integration: 

� People and process - Decentralized ownership: API management's goal is to enable both 
API providers and API consumers to be as autonomous as possible. Ideally, it enables 
them to configure, expose, discover, and consume APIs without relying on the enterprise 
architecture community. 

� Architecture and design - Delivery led architecture: API management is in itself an 
architectural pattern that better enables delivery by being consumer-centric at its core, 
which means that API management is primarily concerned with enabling APIs for 
consumers. As such, it provides discovery, self-subscription, traffic management, secure 
connectivity, metrics, and more to ensure that the API is seen as needed by consumers. 
The API is a product in its own right. 

� Technology and infrastructure - Cloud-native infrastructure: There are two sides to this 
aspect. The API management capability itself must be able to run on a cloud-native 
infrastructure such as containers if required. However, there is a more subtle side to this 
aspect in that API-based communication is fundamental to cloud-native applications. So, 
we look at when and where it is appropriate to insert an API management gateway into, for 
example, a microservices application.

The act of introducing API management is fundamental to integration modernization. 
However, even though the concepts of API management are relatively mature, it does not 
mean every enterprise has implemented it. Many organizations are on a digital transformation 
journey but they are starting within a service-oriented architecture (SOA). Their challenge is 
knowing what it will look like to add API management their environment. So, we are going to 
begin with a rough history that is similar to the one Chapter 2, “Agile integration” on page 5, 
but with a particular focus on the evolution of API management. This history helps you see 
where and why enterprises might be where they are today and what the future might look like 
for them. 

3.1.1  A brief history of API management

When synchronous web services were made available when SOA was common, it became 
clear that providing an interface for consumers to call was only part of the story. Consumers 
needed to find that interface, learn how to use it, and self-subscribe so that they could use it 
securely.

Service-oriented architecture
SOA initially addressed this challenge by adding a service registry (Figure 3-1), which was a 
separate component of the integration run time that was used to implement the web service. 
It was hard to keep the definitions in the registry synchronized with the implemented 
interfaces of the integration run time. 
42 Accelerating Modernization with Agile Integration



Figure 3-1   Service-oriented architecture

Some attempts were made to enable cross-synchronization and the integration run time to 
call the service registry at run time. However, because they are two separately designed 
components, potentially even from different vendors, synchronization was challenging. 
Worse, some use cases involved a call out to the service registry during the service 
invocation, which introduced another potential point of failure and increased latency at run 
time. 
Chapter 3. Agile integration: Capability perspectives 43



External exposure of services
Around this time, we started to see enterprises exploring exposure of interfaces beyond the 
boundary of the organization. There are much more challenging security implications in this 
situation, so the idea of a secure gateway in the DMZ was introduced, as shown in Figure 3-2 
on page 44.

Figure 3-2   Externally exposed services

This gateway had only one job: to securely expose the interfaces on the internet, handling 
whatever security model was required, and protecting against other forms of attacks, such as 
denial of service, and even payload-based attacks, such as XML threats. It then passed the 
request on the enterprise’s network to an integration engine that performed the integration to 
the back-end system's protocols, performed data mapping, and did any composition of 
invocations that were required to form the response. This situation encouraged a separation 
of duties between exposure (on the gateway) and integration (in the integration run time) so 
that each component could focus on what it does best. 
44 Accelerating Modernization with Agile Integration



From web services to RESTful APIs
As often happens as technologies mature, web services became more complex to implement. 
Eventually, a new protocol was introduced, APIs, which use JSON payloads over HTTP. APIs 
became popular for external exposure because the consuming application (such as single 
page web applications and mobile apps) preferred the simpler JavaScript native JSON as a 
data format to the more complex XML trees. However, there was something else different 
about these interfaces. They used what was termed a RESTful interaction pattern that uses 
the natively HTTP verbs to mirror the common create, read, update, and delete against data 
entities. These patterns were easy to consume by the new applications, but often the 
back-end systems were a long way from this model. To provide the needed RESTful interface, 
as shown in Figure 3-3 on page 45. 

Figure 3-3   RESTful APIs

Soon, we saw the introduction of an engagement tier to create these RESTful APIs by 
converting and enriching the back-end data to produce this consumer-focused interface. The 
engagement tier was there, but it was seen as the presentation tier where consumer-facing 
web applications were built. Now, it has an extra role in creating consumer-facing APIs. 
Chapter 3. Agile integration: Capability perspectives 45



The introduction of API management
It was around this point that the API economy grew. These consumer-focused APIs could be 
made available to external innovators to rapidly create disruptive applications and break into 
new markets. However, this situation created challenges:

� How does an organization keep up with the number of consumers wanting to be 
onboarded to use the new APIs? 

� How should they monitor and even limit their usage to avoid rogue applications over-using 
the service. 

� How do they enable new communities to quickly learn how to use the APIs, and enable 
working in collaboration with those communities to improve the API designs?

In some instances, there was even a need to monetize (charge for use of) the API.

Figure 3-4 on page 46 provides an overview of API management.

Figure 3-4   API management

To cater for these exposure-based needs of the consumers, rather than return to the 
challenges of a separate service registry product, the API gateway vendors took on the 
challenge of incorporating the registry alongside the gateway. The separate service registry 
became the incorporated API catalog, and API management was born, as shown in 
Figure 3-5 on page 47.
46 Accelerating Modernization with Agile Integration



Figure 3-5   Differentiating exposure from implementation in API-led integration

The API management capability enables API providers to create or import an interface 
specification, provide the necessary configuration for a security model, and document how to 
use it. The API provider can then decide who should be able to see and subscribe to the API 
and what service they can expect, for example, in terms of throughput rate. At the designer's 
request, the API management capability then simultaneously configures the API gateway, 
makes the documentation available through a portal site, provides facilities for 
self-subscription to the API, and collects data on the usage.

Integration

Provider(s)

Consumer(s)
Exposure

(consumer focused lifecycle)

Implementation
(provider focused lifecycle)
Chapter 3. Agile integration: Capability perspectives 47



API management within the enterprise boundary
After the components of API management matured and the benefits were clear, enterprises 
wanted those same benefits within their organizations. If they could have that level of 
convenience for consumers of APIs outside the enterprise boundary, surely they wanted that 
situation for the broader set of APIs that they wanted to expose internally, as shown in 
Figure 3-6. 

Figure 3-6   API management within the enterprise boundary

As such, the API management capability often has gateways both at the edge of the 
enterprise and within it. You could see this situation as the maturing of SOA because it 
provides easily reusable services. Some organizations continue to refer to internally exposed 
interfaces as services for that reason regardless of whether they use RESTful JSON and 
HTTP, or SOAP-based web service protocols. 

API management: More than a gateway
So far, API management has been represented as little more than a gateway through which 
invocations pass, but for most implementations it is multiple separate but highly coordinated 
components. Only the gateway lies on the invocation path of the APIs. 

The API gateway is responsible for the following items: 

� Composition: Implements the custom integration logic, including aggregation from 
multiple sources and merging of data.

� Decoupling and routing: Acting as a proxy to the actual implementation to protect the 
consumer from change. Requests can be rerouted to new versions of an API 
implementation or have rules that are based on the incoming message headers or content 
to decide which version to route to. 
48 Accelerating Modernization with Agile Integration



� Traffic management: Policies the incoming requests, for example, in terms of throughput. 
Again, this might be a single throughput rate for all consumers or it might depend on which 
consumer is calling. 

� Security: Protects the API from being used by non-subscribers by using authentication 
and an authorization mechanism that is based on which roles are allowed access to which 
APIs. Security can be different for various subscribers, especially for APIs exposed within 
the organization and those exposed to the general public.

� Conversion: Simple conversions can smooth movement between versions of the API 
implementations when the data model changes. If the gateway’s conversion capabilities 
are high performance, you might want to perform more complex conversion of data 
models. You might use the gateway to perform switches between common wire formats, 
such as between XML and JSON. Anything more complex should be done in a lower level 
of the architecture. 

These items imply that the gateway has significant knowledge of the APIs it is routing, 
throttling, securing, and converting. Where did that knowledge come from? Who configured 
the gateway? This is where the core benefit of API management comes in. Gateways have 
been around for a long time and are rich in functions. As such, they require specialist 
knowledge to configure them. However, the API exposure use is a simpler subset of that 
function. 

Figure 3-7 gives an overview of how the gateway connects to the API manager and other 
components.

Figure 3-7   API management: More than just a gateway

In API management, there is a separate component on which you can define and administer 
the APIs that is called the API manager, which is responsible for the following items:

� API design: Enabling API providers to build APIs or create them based on provided 
information, such as the Open API Specification (previously Swagger). 

� Access management: Prepare rules about who can discover, subscribe to, and access the 
API after it is made available. 

� Policy administration: Assign policies about throughput, security models, and more about 
the APIs. You might base these policies on the type of subscription that the consumers 
choose. 
Chapter 3. Agile integration: Capability perspectives 49



� Gateway configuration: After the APIs and their associated access management and 
policies are prepared, the API manager can push them to the gateway. The API provider 
requires only minimal knowledge of the gateway because the API manager uses 
well-tested patterns to perform the configuration. As such, the consistency is higher, and 
the likelihood of performing an erroneous deployment that might destabilize other APIs is 
reduced. 

� Usage analytics: During run time, the gateway captures events relating to its usage, which 
are interpreted and placed in an analytics store. The API provider can retrieve them to 
evaluate the usage of the APIs for diagnostics, planning, and charging. 

But how do developers discover and learn about the APIs in the first place? The 
consumer-facing view of the API catalog is the developer portal, which is responsible for the 
following items:

� API discovery: When APIs are published to the API gateway, they are also published to the 
API catalog on the developer portal so that the gateway and portal are always 
synchronized. Consumers can come to the developer portal to search for APIs that are 
related to particular data resources and explore their documentation before they commit to 
using them in their applications. They see only the APIs that are appropriate for their role. 

� Self-service: After a consumer has found the API that they want to use, they can use the 
Developer Portal to directly subscribe to it. They receive any keys and secrets that are 
necessary to call the API. This process should be as automated as possible so that new 
users can get onboard with minimal impact on the API provider and still make their 
invocations as a known consumer so that their usage can be tracked and controlled. 

� Account usage analytics: Just as the provider has an interest in the usage statistics, so 
does the consumer. They want to know that the API is performing well. If they are being 
charged, they want to see what volumes of invocations they are using.

With the combination of the tightly synchronized API gateway, API manager, and API portal, 
you can achieve the consistent consumer-centric administration of APIs that is required by 
autonomous development teams.

Decentralized API ownership on a centralized API management 
infrastructure
Modern application development practices mandate a more “decentralized” approach to 
improve productivity and agility by giving teams more autonomy to self-serve. What does that 
really mean from an API management perspective? Should the decentralized approach be 
applied down at the infrastructure level, increasing the number of gateways and other 
components so that each team has their own? Does it mean that application teams should 
independently use the shared capabilities of API management in an isolated, multi-tenant 
fashion?

This section explores the deployment of the API management components by using modern 
application development methods to see what decentralized integration ownership really 
means in this context.

An overly simplistic view of decentralization might lead us to the conclusion that every team or 
component might need its own dedicated API management infrastructure. At a minimum, this 
would mean an API gateway for each API implementation, as shown in Figure 3-8.
50 Accelerating Modernization with Agile Integration



Figure 3-8   Dedicated API management infrastructure

It is easy to see how this might quickly get out of hand. Does each gateway need its own API 
manager and Developer Portal? It would be painful if each team had to manage their own API 
management infrastructure alongside their implementation. Furthermore, the mapping 
between exposed APIs on the gateway and the underlying implementations might not be one 
to one. An API’s coverage might spread across many different implementations. An API might 
be exposed in many different forms to satisfy different channels or types of consumer. How 
would you split up the gateways? Figure 3-8 suggests that in the case of API management 
that you should not be looking at decentralization from an infrastructure perspective.

You might notice that we deliberately used the phrase decentralized integration ownership. 
We are intentionally emphasizing that it is the ownership that must be decentralized among 
teams and not necessarily among the infrastructure as well. In the case of API management, 
the thing you are decentralizing is the ownership over the ability to administer APIs (the 
provider perspective) and the ability to discover, subscribe, and use them (the consumer's 
perspective). API management deliberately designed to make it easier to decentralize 
ownership of the APIs so that providers and consumers could administer their own APIs 
without referring to a central team.

We already described that distributing the infrastructure, for example, with a separate 
gateway for each implementation, adds unnecessary complexity. As shown in Figure 3-9, 
could you have one API management infrastructure across all APIs and still provide 
decentralized ownership?

Figure 3-9   Decentralized API ownership on a centralized API management infrastructure
Chapter 3. Agile integration: Capability perspectives 51



A good API management capability should provide strong multi-tenant capabilities so that it 
can expose APIs from multiple separate implementations and provide good isolation. For 
example, managing heavy traffic through one API (and perhaps limiting it in relation to the 
policy that is defined for its consumers) should have no effect on the performance 
characteristics of any other APIs also passing through the gateway concurrently. 

Equally, there should obviously be zero chance of any leakage of runtime data between APIs. 
This should be true on the gateway and components. There should be no risk that the people 
configuring one set of APIs by using the API management user interface can make changes 
or see the other API configurations that are present. The portal access should separately 
control sets of portal pages for each independently administered API. The rules as to who 
can view and subscribe to the APIs also must be separate for each API. So, each API is 
defined, managed, and administered only by the team that created it, and is made available to 
only those consumers that they deem appropriate. It is a true multi-tenant architecture.

There is nothing technically stopping us from having a separate gateway for each API 
implementation, but because you have the multi-tenancy capabilities, there is little benefit in 
doing so. The configuration, runtime data, and performance characteristics are already 
suitably isolated and independently administrable. You might be concerned about a high level 
of availability and not want to run the risk of being affected by downtime that is caused by 
other APIs. However, to define and expose an API, you are not delivering code, only a 
configuration, so it should be hard for someone defining an API to cause instability on the API 
management platform.

Furthermore, you expect the API management platform to provide sufficient redundancy and 
have fast enough component recovery times that any outages that did occur would be barely 
noticeable.

Perhaps you should be thinking of API management more as a facility that is available to your 
applications rather than as a part of the applications themselves. An analogy is a network 
infrastructure. You typically do not expect each application to have its own network routers, for 
example, because they are an infrastructural capability that you share from the platform on 
which your environment sits.

Federated gateways and centralized management
Although a gateway per implementation is clearly too granular, there are some reasons that 
you might want or need to break up some of the API management infrastructure.

A typical reason to split gateways is because of lines of business (LOBs). Each LOB might 
want an independent gateway for their part of the organization for many reasons, such as 
independence and decoupling, or it might be because of practical issues, such the different 
LOBs having different network domains.

Looking from a much broader architectural perspective, many organizations today have a 
hybrid infrastructure, where they have components that are spread between on-premises, 
and also have a multicloud infrastructure. Their infrastructure is spread across multiple cloud 
vendors. Each of these platforms might come with its own API management capability, but if 
you adopt all of them, the technical diversity would be constantly increasing. It would also 
make for a disjointed consumer experience if APIs were served from radically different portals 
and API catalogs. 

Figure 3-10 on page 53 shows an overview of federated gateways and centralized 
management.
52 Accelerating Modernization with Agile Integration



Figure 3-10   Federated API gateways and centralized management

To achieve discoverability and reuse objectives, it is much better to pick one API management 
capability that can manage multiple gateways (one on each of the platforms) from a central 
API management facility, which then can publish definitions to a single portal that consumers 
use to explore and subscribe to all available APIs. It would be only the URLs of the APIs 
themselves that might reveal that they are on different gateways (and even that could be 
hidden if required). 

Thus, you have the best of all worlds: 

� The simplicity of the API management capability enables decentralized ownership so that 
teams can own the administration of their own APIs. 

� The multi-tenancy of the API management facility can be provided by a centralized 
infrastructure to simplify the overall architecture.

� The architecture is divided into components such that, for example, it can have multiple 
federated gateways that are managed centrally. 

For more information about this topic, see Is API management a centralized or decentralized 
approach?

3.1.2  Cloud-native infrastructure 

It might seem like we have forgotten one of the aspects of agile integration: cloud-native 
infrastructure. So far, we have not mentioned containers or cloud-native in relation to API 
management.

The reality is that from an API consumer or provider perspective, you should be treating API 
management as a centralized and multi-tenant capability. You should not need to concern 
ourselves with how it is built internally. It is the API management software vendor who should 
be ensuring that the technology scales and provides the necessary availability. 

Private
Chapter 3. Agile integration: Capability perspectives 53

https://developer.ibm.com/apiconnect/2018/12/10/api-management-centralized-or-decentralized
https://developer.ibm.com/apiconnect/2018/12/10/api-management-centralized-or-decentralized


Over time, you expect an API management capability to take advantage of and run on a 
cloud-native infrastructure.

There is one more topic regarding API management and cloud-native to describe: the 
relationship between API management and a service mesh. However, because it is not an 
integration modernization topic, and we have not described a service mesh is, we will 
describe application boundaries and the service mesh in Chapter 4, “Cloud-native concepts 
and technology” on page 85. 

Conclusion on API management in agile integration
API management and the consumer-centric focus are critical to decentralized ownership of 
APIs. We also described if and when it is appropriate for the infrastructure to be 
decentralized. Finally, we considered how a cloud-native infrastructure can be applied to the 
software vendors design of API management components. 

3.2  Capability perspective: Application integration

Agile integration, when viewed from an application integration perspective, primarily focuses 
on the breaking up of the centralized ESB pattern into discrete integrations.

Let’s consider at a high level how this topic relates to the three aspects of agile integration:

� Decentralized ownership: These smaller, isolated integrations can have different owners. 
Application teams can choose to own and potentially implement their own integrations. 

� Delivery-led architecture: Integrations can be deployed in more fine-grained groups 
through automated pipelines to enable Continuous Integration and Continuous Delivery 
and Deployment (CI/CD).

� Cloud-native infrastructure: Providing integrations as images to a container orchestration 
platform enables standardized deployment, administration, elastic scalability, portability, 
and more.

Figure 3-12 on page 56 shows the summary of the three phases: Traditional, fine-grained, 
and decentralized.

Figure 3-11   Summary of the three phases: traditional, fine-grained, and decentralized

You must do groundwork such as breaking up the ESB, improving your automation of 
processes, and moving to container infrastructure before you can change the ownership 

Integration

Centralized 
ESB

Fine-grained 
integration deployment

API Management

Decentralized 
integration ownership
54 Accelerating Modernization with Agile Integration



model for your existing integrations. For some new integrations, you might have some options. 

3.2.1  Moving to a cloud-native approach

Most of the changes that are required when moving towards more fine-grained and 
decentralized integration align with cloud-native principles.

The term cloud-native refers to a different approach to designing, building, deploying, and 
administering components. If done well, it provides implementation agility, infrastructure 
optimization, discrete resilience, and platform portability. 

On a practical level, it encompasses the following items:

� Modular components 
� Stateless components 
� Image-based deployment 
� Elastic, agnostic infrastructure 
� Lightweight run times 
� Log-based monitoring
� API-based intra-app communication 
� Event-driven architecture
� CI/CD 
� DevOps 
� Agile methods 

We touch on all of these items as we explore modernization of application integration. If you 
are only vaguely familiar with cloud-native or any of these terms, see Chapter 4, “Cloud-native 
concepts and technology” on page 85, which explains them in more detail. 

We begin a description about breaking up the ESB into more, fine-grained modular 
components. 

3.2.2  Fine-grained deployment: Breaking up the ESB

Because of the potential benefits of breaking up applications into microservices, you should 
consider breaking up the ESB into many separate modules so that each is on its own 
separate run time with just a small collection of integrations inside. 

Figure 3-12 shows a fine-grained deployment. 
Chapter 3. Agile integration: Capability perspectives 55



Figure 3-12   Fine-grained deployment: Breaking up the ESB

Figure 3-12 also shows the concept of API management because it is common that when you 
break up the ESB that you need more sophisticated exposure of APIs, and the two activities 
are complementary. For more information, see 3.1, “Capability perspective: API 
management” on page 42.

Let’s consider what benefits you can gain from moving to this more fine-grained model: 

� Independent deployment: Discrete integrations can be deployed with certainty that they 
will not introduce instability to other integrations. For example, if a new integration 
included some custom Java libraries that introduce a memory leak or another issue that 
caused its integration run time to fail, it will not bring down any other integrations when it 
fails. 

� Runtime version independence: Integrations can be paired with whichever version of the 
run time that they require, perhaps by using the latest Fix Pack for specific features. There 
is no need to wait for the next planned runtime upgrade based on the schedules, and you 
do not need to worry about regression testing of all the other integrations. 

� Minimal dependencies: You need install only the dependencies that are required for the 
integrations. For example, if a local IBM MQ server is not required with the integration 
server, it does not need to be present. This situation reduces installation time, start-up 
time, memory footprint, and overall complexity. 

3.2.3  Grouping integrations

Although you might potentially separate each integration into a separate run time, it is unlikely 
that such an approach would make sense. It is common to hear that enterprises have 
hundreds of integrations running in their centralized ESB. Moving to hundreds of independent 
servers would be unnecessarily fine-grained. 

The real goal is to ensure that unrelated integrations are not housed together, that is, a middle 
ground with group-related integrations together (Figure 3-13) can be sufficient to gain many 
of the benefits.

Integration

Sy
st

em
s 

of
 

re
co

rd

Centralized 
ESB

Fine-grained 
integration deployment

En
ga

ge
m

en
t

ap
pl

ic
at

io
ns

API Management
56 Accelerating Modernization with Agile Integration



Figure 3-13   Grouping integrations

You target the integrations that need the most independence and break them out on their 
own. Keep together flows that, for example, share a common data model for 
cross-compatibility. In a situation where changes to one integration must result in changes to 
all related integrations, the benefits of separation might not be so relevant unless there are 
other overriding reasons, such as differing scaling requirements.

The grouping of integrations is covered in greater depth with specific reference to the decision 
points in 5.3, “API Lifecycle: IBM API Connect” on page 147.

So far, we are talking about the act of separating integrations into more fine-grained groups, 
which does not necessarily imply a change of infrastructure from, for example, the current 
virtual machines (VMs) to a container platform. For example, if we were describing IBM App 
Connect, we could be splitting integrations across integration servers (previously known as 
execution groups), so no containers are required. If you are not ready to make the move to 
container technology, something like this action might be a valuable step in the correct 
direction, with its own inherent benefits, and it makes any later move to containers easier and 
more natural. 

Deciding at what point to make the move to containers is important, and should be based on 
the required benefits, not just on the desire to use modern technology. In 7.1, “IBM App 
Connect adoption paths” on page 434, we describe this topic in detail in the context of IBM 
App Connect. However, this chapter is product-neutral, so we look at containers from a purely 
architectural perspective for now. 

As you progress through this section, you take more steps toward a cloud-native approach for 
application integration. Many of these steps are more beneficial on a container-based 
platform. 

Breaking down the ESB into smaller components so that they are more independent and 
running them in lightweight containers is part of being cloud-native, but there is more to it than 
that. 

before after
Chapter 3. Agile integration: Capability perspectives 57



3.2.4  Stateless components 

Statelessness of the integration components is critical if a container orchestration capability 
such as Kubernetes (K8s) administers them. To be stateless, integrations must not hold or 
persist any state as a result of running an integration that is visible only to them, which is 
necessary for future processing of invocations. To do otherwise inhibits K8s from scaling the 
integration (especially scaling down). Similarly, it would make recovering from failure in an 
integration replica more difficult because any replacement would have to be able to see the 
same persisted data. 

Integrations do not use one of the most common forms of statefulness (stateful sessions) 
because they rarely have any notion of user state. However, they do have other forms of state 
that should be eliminated. 

One of the most common states is local message queues. If a component has a local 
message queue that persists messages specifically for that replica, then if the component is 
stopped, these messages become orphaned or lost. Fortunately, there is a relatively 
straightforward solution because most modern queuing systems can now switch to remote 
queues that have a lifecycle that is independent from the integration and potentially can be 
moved to a more shared pattern so that queues are not dedicated to a particular instance of 
an integration. These issues are subtle, as is anything involving persistent state and 
containers, and you find plenty more resources relating to this topic in later sections. 

Not all integrations can be stateless, and there are cases where you must hold a state by 
using K8s concepts such as Persistent Volume Claims, which enable reattaching and even 
sharing a persistent state, and StatefulSets, which enable us to manage replicas that need 
more control over what happens when they scale or are reinstated. 

Many integrations are inherently stateless, and more can be made stateless with relatively 
minor refactoring. For those integrations that must remain stateful, they can still be 
containerized, and they are better off, but you might have to compromise on some of the 
cloud-native benefits. 

3.2.5  Image-based deployment

Image-based deployment is a mechanism for doing file-based packaging of all local 
dependencies into an immutable image. The image contains the integration artifacts, the 
integration product run time, and enough of the operating system for it to be run 
independently in a container environment. 

Figure 3-14 shows image-based integration deployment.
58 Accelerating Modernization with Agile Integration



I

Figure 3-14   Image-based integration deployment

Packaging top to bottom dependencies makes for more consistent and rapid deployment. It 
also makes it possible for container environments to deploy and administer integrations 
without having to know anything about the integration product. This consistency improves 
testing confidence, enables simpler re-creation of environments for, for example, functional 
and performance testing, and simplifies problem diagnosis.
Chapter 3. Agile integration: Capability perspectives 59



Let’s briefly compare image-based deployment to traditional deployment. In traditional 
deployment, you create an integration server with all the dependencies, fix packs, and 
configuration that is required for all the integrations that will be deployed to it. Many of these 
steps are done by running proprietary installation and configuration commands of the 
operating system and integration server. Then, you deploy your integration again by running a 
proprietary command on a running live integration server along with any additional 
configuration. Few of these actions can be performed by a neutral container orchestration 
capability.

With image-based deployment, integration servers are not administered when they are live. 
The installation of the product and its fix packs and the addition of application artifacts are 
done by laying files down on the file system and capturing it as a “container image”. The 
image will have further metadata within it, such as what process within the image to run on 
start and which ports to open. From this point, the image is a black box. You do not have to 
know anything about what kind of run time or integrations are inside it to start it. 

3.2.6  Elastic, agnostic infrastructure and container orchestration platforms 

What we described in terms of image-based deployment is how Docker containers work. It is 
their black box nature that allows a neutral container orchestration system like K8s to deploy 
and administer them consistently without any product-specific knowledge. 

Although this is an architectural chapter, a concrete example is essential here. 
IBM Integration Bus (the predecessor to IBM App Connect) required an integration node (or 
broker in older versions) to look after the set of integration servers (or execution groups as 
they were previously known) that performed the integrations. Most traditionally deployed 
products had something similar. 

Creating an integration topology entailed explicitly installing both the integration node and 
several integration servers and configuring them to know about one another. Then, you had to 
configure the integration node to perform load-balancing across the integration servers or 
independently set up a pair of HTTP load balancers to spread the incoming calls across them. 
You had to know a lot about the topology of IBM Integration Bus and the installation 
configuration to set up and maintain a production worthy high availability (HA) topology. 

In this new cloud-native approach with the latest version of IBM App Connect, there is no 
need for an integration node when running in a containerized deployment. You can still create 
a traditional topology on VMs with an integration node, as described in 7.1, “IBM App Connect 
adoption paths” on page 434, but it is not needed in a container platform. 

By using K8s, you can deploy container images regardless of what they contain. K8s can 
scale, load balance, provide fault tolerance, and perform updates. You provide a policy about 
its non-functional characteristics, for example, a minimum number of replicas for initial HA 
and performance characteristics, when to create more replicas, and up to what maximum. If a 
container fails, K8s reinstates it. If the existing containers reach a CPU threshold, more 
replicas are created. All the necessary load-balancing and health-checking is done 
automatically for you.
60 Accelerating Modernization with Agile Integration



Figure 3-15 on page 61 shows traditional versus cloud-native integration models.

Figure 3-15   Traditional versus cloud-native integration models

This is a radically different way of building and running an integration topology. The benefit is 
that it enables a generic platform such as K8s to instantly create a topology based on any 
image that is provided to it, and autonomically provides HA and scaling. Better still, if you 
must re-create exactly that setup in another environment, K8s has everything that it needs to 
do so. There is no risk of configuration divergence. All environments are started from the 
same set of images, configuration, and policy. 

Regarding changes, we improved the application component design. For example, assume 
that there is an important new fix pack out with a security patch for the run time. You cannot 
make changes on a running server because your live container will be out of sync with the 
image repository and you can no longer easily re-create the environment. 

Instead, think back to our description of image-based deployment. All changes should be 
done by creating a container image, placing it in the image repository, and then instructing 
K8s to refresh it in whichever environment it must be applied. K8s starts a new set of replicas 
based on the new image, then shuts down the current containers until the new configuration 
is in place. K8s did not need to know anything proprietary about how to deploy applications to 
the run time in the container; it just creates a new container from the new image just like it did 
originally. 
Chapter 3. Agile integration: Capability perspectives 61



Breaking up an ESB into more modular fine-grained integration components might seem like 
it adds more complexity to your infrastructure. You can now see that much of the creation and 
management of these discrete topologies for each integration is done for us by K8s, so it no 
longer seems so daunting. Furthermore, adopting container orchestration reduces the 
deployment and administration skills operational teams need because they largely are 
consistent across any solution that sits on a container-based platform. This operational 
consistency becomes all more important in the decentralized ownership of integration.

3.2.7  Lightweight run times: How the modern integration run time has 
changed

K8s can perform deployments, create resilient topologies, self-heal, and scale elastically, but 
your runtimes must be lightweight, that is, they ideally must be a single process that pulls 
everything it needs from the file system on start and requires no further online configuration.

For this reason, integration run times have evolved in recent years. Let’s have look at some of 
the key improvements that enable the characteristics we discussed:

� Rapid start-up: The run times are a single process that runs in containers such as Docker. 
They are lightweight enough that they can be started and stopped in seconds, and can be 
easily administered by orchestration frameworks such as K8s.

� Dependency free: The run times no longer have hard dependencies on databases or 
message queues that must be installed alongside them, although they are still adept at 
connecting to them remotely.

� File system installation, configuration, and deployment: The run times can be installed and 
configured by laying their binary and configuration files on a file system and starting them. 
Furthermore, there is no longer a need to deploy integrations to a live running integration 
server. The integrations artifacts (maps, flows, configuration, and others) can be laid down 
on the file system. This situation is ideal for the layered file systems of Docker images and 
the automated pipelines that are essential for CI/CD.

For more information, see 5.5, “Application integration: IBM App Connect” on page 155. 

Now, we continue with a few more cloud-native characteristics and see how they are handled 
by modern integration run times.

3.2.8  Log-based monitoring

You should not be connecting directly to individual containers, so monitoring cannot be done 
by direct connection. Instead, the integration run times are enabled to report their status by 
using standardized logging, which can then be aggregated by a monitoring stack on the 
container. 

3.2.9  API intra-application communication

Cloud-native components should communicate by using runtime-neutral protocols, the most 
common of which is RESTful APIs. Exposing and calling APIs is part of an integration’s basic 
function. 
62 Accelerating Modernization with Agile Integration



3.2.10  Event-driven architecture

In some cases, it is necessary to reduce runtime coupling between cloud-native components 
by using asynchronous protocols, patterns such as event sourcing, and Command Query 
Responsibility Segregation (CQRS). Even-based brokers such as those based on Apache 
Kafka are popular in this space. Traditional messaging still has a place as a cross-platform 
communication style that provides transitionally assured delivery. Connectivity over these 
protocols and transports is basic function for a modern integration engine.

3.2.11  Agile methods

There is little point in changing your entire architectural approach and moving to a 
container-based infrastructure if you then persist with an outdated waterfall approach to 
implementation. 

Agile is a broad term that encompasses lessons that were learned over many decades of 
software development around how to work more collaboratively with the business, working in 
short sprints with the aim of delivering some value early, and then reaffirming the direction of 
travel. 

Integration is no different in this respect, and it benefits from the fact that most integrations 
are naturally discrete pieces of work. Lessons that were learned from the SOA era confirm 
that spending too long over-analyzing the perfect set of reusable services is time that is lost. 
Picking a handful of likely candidates, building them out for immediate value, and then 
iterating to improve them is a much more likely route to success. 

There are good reasons that it was more difficult to work in an agile way in the past. The 
concepts were there and progressively honed over the years in various forms, but they also 
needed the technology to catch up. Now, you live in an era where individual decoupled 
components can be rapidly and built, tested, and deployed without the impact of long up-front 
infrastructure projects to environments in place. Now, agile is much more feasible because 
the technology has caught up and the methods are there, but there is still one more thing that 
must be sorted before you can move at the speed of the business: processes and people.

3.2.12  Continuous Integration and Continuous Delivery and Deployment

Development process automation is a foundation of agile delivery. Agility is defined by how 
fast you can go through the cycle of understanding a requirement, implementing that 
requirement, and then getting feedback on that requirement before going back into the loop. 
You cannot afford for the implementation part of that loop to be impeded by a slow and 
complex build and deploy processes. 

You must automate and streamline the pipeline process for building, in our case, the container 
images from our latest version of an integration, which must include automated quality 
assurance and testing. This process is known as is Continuous Integration (CI). 

You also must automate the process of delivering and potentially even deploying that new 
image into the relevant environments. This process is known as Continuous Delivery and 
Deployment (CD). 

Note: A waterfall methodology is where an attempt is made to gather all the requirements 
up front, and then the implementation team works in isolation until they deliver the final 
product for acceptance.
Chapter 3. Agile integration: Capability perspectives 63



The good news is that the steps you have taken to make the run time more suited to 
containers have also made both these tasks simpler. If you recall, installing and configuring 
the integration run time is now a matter of file copy commands, as is the addition of the 
integration artifacts. These artifacts can be programmed into easily understood build pipeline 
scripts. These scripts can be triggered based on events from the source control, resulting in a 
container image that is ready for deployment. Deployment is now something that based on 
additional policy information, which K8s already has. 

We are over-simplifying, but the point is that the complexities of creating CI/CD pipelines are 
reduced after we take on the elements of the cloud-native approach. 

An example of CI/CD pipelines for App Connect is shown in 7.5, “Continuous Integration and 
Continuous Delivery Pipeline using IBM App Connect V11 architecture” on page 465.

3.2.13  DevOps

Last but not least, we come to people, or more specifically, how people collaborate across 
teams and which teams they are in. To keep that close link between what we implement and 
what the business sees and uses in production, we must narrow the gap between 
development and operations. 

You must get away from the “throw it over the wall” mentality that can occur between heavily 
separated development and operations teams and give both sides an investment in each 
other’s success. This situation is DevOps. 

The same potential separations exist in the integration space as they do in application 
development, where DevOps was first introduced. 

On a technical level, we can say that through image-based deployment and the ability to 
repeatedly deploy discrete fine-grained integration components, cloud-native techniques 
ensure a much greater consistency between what was tested during development and what is 
live in production. But, DevOps is not just about technology.

People are the key to success in DevOps: How they are organized, incentivized, motivated, 
and more. It is beyond the scope of this book to delve into how to achieve DevOps 
successfully, but we should mention one particular role change that is prevalent. 

Operations teams, which used to have their hands full focusing on performing manual 
procedures to create and configure environments and reactively chasing down problems 
based on alerts, now have an opportunity for a more interesting role. As platforms such as 
K8s take away much of the drudgery of building and maintaining environments, the 
operations teams are turning their hands to automation. They automate anything that they 
see often enough to understand a pattern. They are no longer operations staff: They are 
Software Reliability Engineers. 

3.2.14  Creating integrations is becoming easier

If you have followed all the elements of a cloud-native approach, then you have discarded the 
proprietary mechanisms for HA, scaling, deployment, monitoring, and other system 
administration tasks. The teams can use generically available skills for container 
orchestration for building, deploying, and administering their implementations. 

This standardization extends beyond container orchestration into ubiquitous source code 
repositories such as GitHub and build tools such as Jenkins. 
64 Accelerating Modernization with Agile Integration



Ideally, the only new skills you need to pick up to use another run time is how to build its 
artifacts, whether that is writing code for a language run time or building mediation flows for 
an integration engine. After you finish building your artifacts, everything else is done in a 
similar way across all runtime types.

Furthermore, the increasing enhancements to tolls for integration mean that many interfaces 
can be built by configuration alone. Combine this practice with the addition of templates for 
common integration patterns and integration best practices that are burned into the tools that 
further simplify the task of building integrations. 

As such, not all integration implementations require deep integration specialists. Having them 
certainly reduces the recruiting challenge for the integration team, but it also opens another 
possibility: Does the central integration team still need to build and administer all of the 
integrations, or might some potentially be taken on by the application teams themselves?

3.2.15  Decentralizing integration ownership

If you have successfully broken up the integrations into separate decoupled pieces that can 
be administered at run time by using standard container platform skills, you have an 
opportunity to distribute those integrations differently from an ownership and administration 
point of view as well.

As shown in Figure 3-16, decentralization means allowing the administration and potentially 
even the creation and maintenance of integration artifacts to be owned directly by application 
teams rather than by a centralized team. 

Figure 3-16   Decentralizing integration ownership
Chapter 3. Agile integration: Capability perspectives 65



It is important to recognize that decentralization is a significant change for most 
organizations. For some, it might be too different to take on board and they might have valid 
reasons to remain centrally organized in relation to integration. For large organizations, it is 
unlikely it will happen consistently across all domains. It is much more likely that only specific 
pockets of the organization will move to this approach, where it suits them culturally and helps 
them meet their business objectives, and many of the integrations will remain centralized. 

So, we will likely in most organizations see a mixture of both halves of Figure 3-16 on 
page 65. However, some application teams always wanted to own their integrations, so the 
drive for some decentralization is present. 

There are many potential advantages to this decentralized integration approach:

� Application domain knowledge: A common challenge for separate SOA teams was that 
they did not understand the applications they were offering through services. The 
application teams know the data structures of their own applications better than anyone.

� Agility: Fewer teams will be involved in the end-to-end implementation of a solution, 
reducing the cross-team chatter, project delivery timeframe, and inevitable waterfall 
development that typically occurs in these cases.

Let’s reinforce that point we made in the introduction of this section. Although decentralization 
of integration offers potential unique benefits, especially in terms of overall agility, it is a 
departure from the way many organizations are structured today. The pros and cons must be 
weighted carefully, and it might be that a blended approach where only some parts of the 
organization take on this approach is more achievable.

3.2.16  Using integration run times in a microservices application 

In 3.2.15, “Decentralizing integration ownership” on page 65, we spoke about application 
teams creating and administering integrations, but in Figure 3-16 on page 65, we implied we 
that application teams look after the back-end systems of record. What if the team taking on 
the integrations is a microservices application team building a system of engagement 
application?

Figure 3-17 shows implementing microservices with integration.

Figure 3-17   Implementing microservices with integration

API Management

APIM APIM

APIM

APIM APIM

APIM

Fine-grained integration component

APIM

APIM

Integration 
runtimes as 

microservice 
components
66 Accelerating Modernization with Agile Integration



One of the key benefits of the microservices architecture is that you can use multiple different 
run times that are suited for the different jobs. For example, one run time might be focus on 
the user interface and is based on Node.js and many UI libraries. Another run time might be 
more focused on a particular need of the solution, such as a rules engine or machine 
learning. All applications must get data in and out, so you expect an integration run time too, 
which is a specialized run time.

It is common to find microservices components in an application whose responsibilities are 
primarily focused on items like integration. For example, what if a microservices component 
implemented an API that performed a few invocations to other systems, collated and merged 
the results, and responded to the caller? That process is something an integration tool would 
be good at. A simple graphical flow that shows which systems you are calling and might let 
you easily find where the data items are merged, and provides a visual representation of the 
mapping, is easier to maintain than hundreds of lines of code.

Let’s look at another example. There is a resurgence of interest in messaging in the 
microservices world because of the popularity of patterns, such as event-sourced 
applications and using eventual-consistency techniques. So, you probably find many 
microservices components that do little more than take messages from a queue or topic, do a 
little conversion and perhaps enrichment, and then push the result into a data store. However, 
they might require many lines of code to accomplish this task. An integration run time can 
perform the task with easily configurable connectors and graphical data mapping so that you 
do not have to understand the specifics of the messaging and data store interfaces. 

The integration run time is a lightweight component that can be run in a cloud-native style. 
Therefore, it can easily be included within microservices applications rather than just being 
used to integrate among them.

When using this approach, an inevitable question is “Am I introducing an ESB into a 
microservices application?” It is an understandable concern, but as you may recall from the 
earlier definitions, an integration run time is not an ESB. It is just one of the architectural 
patterns of which the integration run time can be a part.

ESB is the heavily centralized, enterprise-scope architectural pattern that is described in 2.2, 
“The journey so far: SOA, ESBs, and APIs” on page 9. Using a modern lightweight integration 
run time to implement integration-related aspects of an application, deploying each 
integration independently in a separate component is different from the centralized ESB 
pattern. So the answer is no: By using a lightweight integration run time to containerize 
discrete integrations, you are not re-creating the centralized ESB pattern within your 
microservices application. You are using the most productive tool for the job in hand. 

In the past, it was difficult for application developers to use integration because the integration 
tools were not part of the application developer’s toolbox. Deep skills were required in the 
integration product and in the associated integration patterns. Now, integrations are easier to 
create and maintain.

Now that applications are composed of many fine-grained components that can be based on 
a polyglot of different run times, you may use the correct run time for each task. Where 
integration-like requirements are present, you can choose to use an integration run time.
Chapter 3. Agile integration: Capability perspectives 67



3.3  Capability perspective: Messaging and event streams

In this section, we describe the messaging and event streams from a capability perspective.

3.3.1  A brief history of asynchronous communication

Asynchronous communication has been present in IT since the beginning. Synchronous 
communication was nearly impossible among disparate platforms. Files and messaging 
infrastructures were the only way to move data among them. 

In recent years, retrieving information by using stateless request and response over HTTP 
became ubiquitous by using web services (SOAP/HTTP) and more recently RESTful APIs by 
using JSON and HTTP. Although these services enable many data communication scenarios, 
there are still a significant proportion that requires a richer and more asynchronous approach. 

The renewed importance of messaging
All enterprises need robust, secure, and reliable ways to move data asynchronously. 

The challenge is more relevant and complex. Instead of moving data from one application and 
operating system to another one, you now have the additional challenge of moving among 
geographically separate cloud locations that are run by different vendors. Furthermore, 
because of the increasing number of connected personal devices, sensors, and increasingly 
fine-grained components, the number of consumers of these asynchronous messages and 
events is increasing.

Introducing event streams
The term events hints at an important progression in this space. You must make a clearer 
distinction between two different use cases, which for our purposes here we call messaging 
and events: 

� Messaging was originally introduced to enable reliable, once only, decoupled delivery 
across disparate platforms. It continues that mission-critical purpose, but now also takes 
the same role in reliable communication across cloud boundaries.

� Events focus on the publish/subscribe pattern. This pattern is possible with messaging, 
but modern use cases come with radically different requirements than those of the past 
and require a different implementation. You now must handle dramatic increases in both 
the number of events occurring and subscribers listening for those events. Furthermore, 
the stateless nature of many consumers of events introduces the need to retain an event 
history. 

We describe in detail the technical and architectural differences between these two 
complementary types of asynchronous communication later in this section, but first you must 
consider how the requirements for messaging and event streams are changing from an 
organizational ownership point of view. 

Application-owned messaging and events
We described how many enterprises are experiencing a move towards more decentralized 
ownership of IT so that they can prototype and iterate on solutions more rapidly. It is no longer 
acceptable to have to wait on a highly specialized team to provision and administer message 
queues and event stream topics. To innovate more rapidly, these decentralized application 
development teams must be able to self-provision and administer the capabilities that they 
need on demand. 
68 Accelerating Modernization with Agile Integration



To enable teams to self-provision without deep knowledge of the technologies, we must 
introduce simplified mechanisms that are based on using templates and patterns for the 
provisioning tasks, which ensures consistency of implementation and a governable and 
maintainable landscape. 

Cloud-native infrastructure for messaging and events
A key opportunity to simplify the deployment of messaging and event topologies is the 
introduction of container platforms, which you can use package the software and its 
configuration so that it can be deployed in a standardized way for a container orchestration 
platform such as K8s. As K8s skills become more ubiquitous, this approach will simplify the 
way that messaging and events technologies are deployed and maintained. 

Because messaging and events implicitly involve the storage of state, their deployment in 
containers is more subtle than that of stateless components. Therefore, we must use more 
complex deployment types such as the StatefulSet, and elastic scalability becomes a slightly 
more challenging proposition. There are still many benefits to be gained by exploring 
containers in this context, for example, in terms of operational consistency, portability, and 
more. 

3.3.2  Introducing messaging and event streams concepts

At a high level, messaging and event streaming technology appear to have overlapping 
capabilities because they both can be used for the same core asynchronous interaction 
patterns. However, on a deeper review of the capabilities of each technology, it becomes clear 
that they achieve these patterns in different ways to serve different purposes, and it is critical 
to select the correct technology for the job. 

Primary asynchronous interaction patterns
Let’s clearly define these high-level asynchronous interaction patterns before we delve into 
each of the two technologies and compare their usage:

� Fire and forget: A requesting application sends a message or event for processing to 
another application. The requesting application wants to ensure that the message or event 
that was sent might in the future submit another request to determine the status of the 
original request, but this is a separate interaction that might not be done by using 
messaging or events.

By using this pattern, requesting applications can submit messages and events to be 
stored by the message and event server and then continue with other processing. The 
target application processes the message or event when it is ready to do so. 

Figure 3-18 shows the fire and forget pattern. 

Figure 3-18   Fire and forget pattern
Chapter 3. Agile integration: Capability perspectives 69



� Decoupled request and reply: Similar to a synchronous call over a protocol such as HTTP, 
a requesting application sends a request message or event to a target application and 
requires a response. However, in contrast to synchronous HTTP calls, the requesting 
application can choose to continue processing and be called with a response when one is 
available. Messaging facilitates this task because the location and availability of the target 
application can be decoupled from the requesting application. 

Figure 3-19 shows a decoupled request and response.

Figure 3-19   Decoupled request and response

� Publish/subscribe: The previous two interaction styles have a one-to-one relationship 
between the requesting and target applications. In other scenarios, it is often desirable to 
send messages and events to multiple target applications. For example, a message or 
event that is published with an airlines flight change might be of interest to the passenger 
mobile application, the itinerary application, and many others. The publish/subscribe 
interaction pattern provides this capability. Applications that publish define a topic where 
they put their messages, and that same topic is used by applications that are interested in 
consuming those messages. The list of subscribers is dynamic. It can change over time, 
as you might suspect when other applications would benefit from that same information.

Request

Response
70 Accelerating Modernization with Agile Integration



Figure 3-20 on page 71 shows the publish/subscribe pattern.

Figure 3-20   Publish/subscribe pattern

3.3.3  Differentiating capabilities

Let’s now consider the core differentiating capabilities of each technology to highlight why 
these technologies are different.

Messaging providers differentiating capabilities
The following list summarizes messaging providers and their differentiating capabilities: 

� Transient data: Data is stored only until a consumer processes the message or it expires. 
The data does not need to be persisted longer than required, and it is beneficial from a 
system resource point of view that it does not.

� Request/reply: Although messaging operations are often fire and forget, they can be 
request and reply too. Messaging technology should support this pattern of interaction. 
Request and reply are something that event brokers are not suited to because it is hard to 
send a response event back to only a specific subscriber. 

� Targeted reliable delivery: Messaging instances can be connected together to a 
messaging network. Clients send a targeted message by using their local messaging 
instance, and the message is transported to the target messaging instances transparently 
from the client regardless of the distance. This targeting can use logical addressing, and in 
many instances it is preferable. Messages should also be delivered by using a suitable 
level of reliability. Different messages have different levels, but often once-and-once-only, 
ensured, and transactional behavior is critical.

Event streaming differentiating capabilities
The following list summarizes event streaming differentiating capabilities:

� Stream history: When retrieving events, consumers are interested in the most recent and 
historical events. There are many instances when this information is valuable, such as 
retrieving the historical trends of a system’s availability. Therefore, every event must be 
appended, and made available to consumers, and depending on the configuration, a 
certain number or volume of events are stored before removal.

� Scalable subscription: An event stream can be consumed by many subscribers with limited 
impact as the number of subscriptions increases.

Topic
Chapter 3. Agile integration: Capability perspectives 71



� Immutable data: When an event is placed in the stream history, it cannot be changed or 
removed. It is immutable data. Therefore, consumers can rely on the assumption of 
consistent replay, which reduces the complexity of replicating the data from a consistency 
point of view.

Although event streaming technology can be forced to implement a messaging solution, or a 
messaging provider can be used to implement an event solution, this produces an 
anti-pattern. They both facilitate the communication of data between systems, but the 
underlying capabilities and usage of the technology is different.

Publish/subscribe considerations
Sections “Messaging providers differentiating capabilities” on page 71 and “Event streaming 
differentiating capabilities” on page 71 provide a high-level view of the difference between 
messaging and event streaming technology. Experienced users see the apparent overlap in 
the publish/subscribe capability. Although they both support publish/subscribe at a high level, 
there are important technical differences. It is beyond the scope of this book to do a 
comprehensive comparison, but the following four capabilities provide a useful illustration and 
best practices to consider:

� Event history: Does the solution need to be able to retrieve historical events either during 
normal and failure situations? Within a messaging-based publish/subscribe model, the 
event is published to a subscriber, and after it is received, it is the subscriber‘s 
responsibility to store this information. There are certain situations where the 
publish/subscribe model can retain the last publication, but it is unusual to use the 
messaging solution to store historical events. For Apache Kafka, storing event history is 
fundamental to the architecture; the only question is how much and for how long. In some 
use cases, it is critical to store this history, and events are a likely solution, and in other 
cases it might be undesirable from a system resources and security point of view, so 
messaging is more appropriate.

� Fined-grained subscriptions: When a topic is created in Apache Kafka, it creates one or 
more partitions within the solution. This is a fundamental architectural concept within the 
underlying Apache Kafka infrastructure, and is key to why Kafka can scale to handle a 
massive number of events. Each partition uses up resources, and it is normally advisable 
to limit the number of topics to hundreds or maybe thousands within a single cluster. 

Messaging publish/subscribe has a more flexible mechanism, where the topic can be a 
hierarchical structure, such as travel; flights; airline; flight number; and seat, allowing more 
selective subscription points. Subscribing applications can select the events at varying 
levels of granularity. In addition, messaging publish and subscribe selectors can be used to 
further refine the events of interest. For applications subscribing, it means that they are far 
less likely to receive events that are irrelevant to them in the case of messaging 
publish/subscribe, and an event streaming application that wants only a small proportion of 
the events likely needs a discarding filter to be applied early in the processing.

� Scalable subscription: If 100 consumers subscribe to all events on a topic, a messaging 
technology must create 100 messages for each published event (except for multicast 
publish/subscribe) so that it can be aware of which ones were read by which subscribers. 
Each of them are stored and, if required, persisted to disk by using system resources. 

In the case of event streams, the event is written once, and each subscription has an index 
corresponding to where they are in the event history. As the number of subscribers 
increases, there is little more work for the event server to do, so it can scale efficiently. 
Messaging is a highly scalable technology, so it depends on the number of events that are 
emitted by the publisher and the number of subscribers whether it is an important deciding 
factor. 
72 Accelerating Modernization with Agile Integration



� Transactional behavior: Both messaging and event streams provide transactional APIs to 
process events. However, the flexibility and capabilities that are provided by certain 
messaging solutions (such as IBM MQ) are wider and more mature than the ones that are 
provided by Apache Kafka. Often in a publish/subscribe solution, the hardened 
transactional behavior of messaging might not be as critical as in a messaging queuing 
scenario. For more information about transactional considerations, see Does Apache 
Kafka do ACID transactions?

3.3.4  A detailed look at messaging

A typical enterprise environment includes numerous applications that must communicate with 
each other to provide business value. Messaging enables a decoupled architecture where an 
intermediary is placed between two applications, systems, or services for communication. 
This component is often referred to as a messaging provider. The messaging provider 
achieves decoupling by providing queues onto which applications can place messages for 
later retrieval by target applications. This asynchronous communication between the systems 
means that the applications no longer depend on each other’s availability. Messaging also 
brings more qualities of service, such as reliable delivery, enhanced security, and workload 
distribution. 

Some examples of messaging providers include:

� IBM MQ
� ActiveMQ
� RabbitMQ

A messaging solution has two key components: The messaging server that manages the 
messages, and a messaging client that consumes and produces messages. This messaging 
client is used by the application for communicating. Messaging providers offer messaging 
clients in different languages, for example, Java, .NET, C, Golang, and Node.js. The 
messaging client provides a simple library that enables applications to send and receive 
messages. Modern messaging solutions also provide a REST-based API to lower the barrier 
of entry so that application developers may interact with the messaging solution by using 
HTTP instead of requiring a messaging client. A mature messaging solution also typically 
supports many operating systems.

When a client communicates with a messaging provider, it can take the role of either or both of 
the requesting service and providing service. Requesting services send a PUT message to a 
queue, and providing services receive a GET message from a queue. 

Figure 3-22 on page 75 shows the messaging basic interaction.

 

Figure 3-21   Messaging basic interaction
Chapter 3. Agile integration: Capability perspectives 73

https://medium.com/@andrew_schofield/does-apache-kafka-do-acid-transactions-647b207f3d0e
https://medium.com/@andrew_schofield/does-apache-kafka-do-acid-transactions-647b207f3d0e


Messaging benefits
Benefits such as reliable, secure, and scalable communication are automatically provided by 
a messaging infrastructure. Let’s discuss these aspects in more detail:

� Decoupled communication: Communicating that uses messaging and queuing removes 
tight coupling between applications. Other technologies such as REST APIs tightly couple 
the requester and responder, meaning that the immediate availability of the responder 
directly affects the requester. Messaging provides an intermediary between the two 
applications, which means that they are free to operate independently. Therefore, 
application developers can write less error-processing code.

� Reliable message delivery: Messaging ensures that business-critical information is not 
lost or duplicated, and is delivered to the recipient once, which removes the need for the 
application to implement de-duplication or loss-prevention logic.

� Security: Encryption of the messages in flight at a transport layer (TLS), and message 
content (payload), including when at rest can be configured within the messaging platform, 
removes the responsibility from the application developer. This scenario can be achieved 
end to end, which separates it from simplistic HTTPS-based encryption on synchronous 
calls. HTTPS encryption must be terminated, typically as it passes through the DMZ. 
Because messaging provides its own transport channels, it also means that security 
characteristics must be finalized independently of the application logic, so no changes to 
the code are required.

� Workload management: When applications receive a high volume of requests, those 
applications can become overloaded and non-responsive. Application developers often 
implement defensive code to protect applications from this scenario. The messaging 
server provides a buffer by allowing work to be temporarily stored until the application is 
ready to process. Instead of the application being flooded with too much work, it instead 
pulls work as it becomes able to process. This drastically simplifies management of 
workload through the application.

Teams are under increased pressure to deliver enterprise-grade applications on ever more 
aggressive deadlines to meet the needs of the business. Using messaging can bring 
qualities of service that otherwise would require significant complex coding and 
configuration to achieve.

Messaging protocols
Messaging providers support a range of communication protocols for exchanging messages. 
Here is some guidance about which protocol to use in which circumstances:

� Proprietary protocol: For example, IBM MQ often provides the best performance because 
it is explicitly designed and implemented for the platform. It also provides access to unique 
features that may be available on only IBM MQ, such as the coordination of two-phase 
commit transactions.

� Specialized protocols for particular use cases: For example, IBM MQ Telemetry Transport 
(MQTT) was created for low bandwidth, Internet of Things (IoT), and publish/subscribe 
based interactions.

� Open Standard Protocol: For example, Advanced Message Queuing Protocol (AMQP) is 
an OASIS open standard protocol for interacting with a wide range of messaging 
providers. Its focus is on interoperable communication, which allows flexibility in the future 
to simplify the effort of migrating between messaging providers.

� HTTP REST-based APIs: The messaging server can expose an HTTP REST-based API 
and remove the need for a messaging client. Application developers are normally 
programming in languages that have built-in library support for HTTP, which lowers the 
barrier to entry, but it does make it harder to ensure a once only delivery of messages 
because HTTP is not a transactional protocol.
74 Accelerating Modernization with Agile Integration



To support these protocols, many programming languages provide language-specific 
messaging APIs, for example, Java Messaging Service (JMS). JMS defines the interfaces, 
and the vendors provide the Java libraries so that an application developer can work with the 
messaging solution without having to know the underlying messaging protocol.

Messaging in agile integration 
Messaging provides several capabilities that support an enterprise-class agile integration. 
Although it is beyond the scope of this book to describe messaging comprehensively, it is 
important to highlight common use cases where messaging is required:

� Decoupled communication: Messaging enables applications to decouple communication, 
relieving the apps from burdens such as routing, target application availability, and secure 
communication. The messaging infrastructure provides these capabilities. A source 
application sends a message to a logical address (called a queue), and the messaging 
infrastructure delivers this message to the target application. At the time of sending, the 
application might be unavailable either due to a failure or planned maintenance window. 
Without messaging, a temporary failure of the target application has an immediate impact 
on the calling application.

� Pulling requests: Messaging enables a pattern where target applications pull workload 
from the messaging infrastructure. Compare this to the more typical direct connections of 
HTTP where work is distributed from a load balancer and pushed directly to the target 
applications.

As shown in Figure 3-22, messaging protects applications during burst workloads when 
the inbound workload is temporarily above the throughput that the servers can handle, so 
requests are buffered. Depending on the scenario, they can be buffered with a time to live 
to prevent stale messages being processed late.

Figure 3-22   Messaging protects applications during burst workloads

Requesting 
App(s)

Load Balancer

Requesting 
App(s)

Pull Pull Pull

Push

Target  
App

Target  
App

Target App Target App Target App Target App

Push
PushPush

Directly connected workload distribution (e.g. HTTP)
Workload based on Requesting App’s demand

Message/events based workload distribution
Workload based on Target App’s capacity

Push
Chapter 3. Agile integration: Capability perspectives 75



� Communication for business-critical applications: Some operations within an integration 
architecture do not require ensured delivery, for example, read operations or calls to 
idempotent services where the caller can retry on failure. The convenience of HTTP is a 
natural protocol for these types of interaction due to its universal availability across 
platforms, operating systems, and applications. However, when completing 
non-idempotent data-changing transactions on business-critical applications, HTTP has 
limitations that can cause frustration and confusion for your clients, and a damaged 
reputation for the business. We have all experienced the situation when we are completing 
an order online when suddenly the order goes into an indeterminate state and it is unclear 
whether the order has occurred. In a stateless integration architecture based on end to 
end HTTP, recovering from fragile networks and application availability that cause the 
above situations is challenging if not unfeasible. Messaging technologies such as IBM MQ 
provide ensured delivery, where situations that can cause an end to end failure are 
reduced, and there is improved recoverability in these cases.

� Hybrid multicloud business critical communication: Within a traditional enterprise with a 
single data center, your business-critical communication between applications is bound to 
the data center. As enterprises embrace the cloud, this leads to a hybrid multicloud 
enterprise with applications hosted across on-premises, public, and private clouds. When 
communicating between clouds, the network becomes the weak link. Here, reliable 
cross-cloud messaging is critical, enabling applications within each cloud to confidently 
write messages locally within their own cloud and know that the messaging framework will 
solve the problem of reliably getting them to their destination cloud once.

Figure 3-23 shows multicloud messaging.

Figure 3-23   Multicloud messaging

IBM Cloud AWS

Multi-Cloud Deployment

On Premise

Multi-Cloud Messaging
76 Accelerating Modernization with Agile Integration



3.3.5  A detailed look at event streams

With event streaming technology, an enterprise can collect, store, and distribute events across 
all their applications at massive scale. When an application interacts with an event stream 
technology, it may be either or both of the following items:

� Providers: Emits and publishes events. 

� Consumers: Reads events. 

Consumers of events do not necessarily want to read all events passing through the event 
streaming installation, so publishers of events specify a topic, and subscribers listen only to 
the topics in which they are interested.

There are two key components to any event streaming technology: A server that stores 
events and manages the topics, and a client that allows applications to interact as a provider 
or consumer.

Several technologies provide event streaming capabilities. The market is leaning toward 
Apache Kafka as the de facto standard. Apache Kafka is an open source project that was 
originally created by LinkedIn and donated to the community in 2011. Some vendors provide 
commercially supported versions of Kafka; our implementation is IBM Event Streams. IBM is 
also a key contributor to the Apache Kafka open source project as committers.

Capabilities for an event streaming technology
The following list highlights three core capabilities for an event streaming technology:

� Stream history: Events that are emitted in an event stream topic are stored and are not 
removed when a subscriber receives the event. The topic can be considered a stream 
history of all the events that are emitted, and allows subscribers to rewind to different 
locations of the topic. Topics are configured with persistence, and the stream history is 
stored so it can be recovered in a failure. The size of the stream history is configurable 
based on the scenario that is required.

� High performance: Event streaming technology is designed to handle millions of events a 
second. This performance is available to the producers who are creating the event and the 
consumers. 

� Scalable subscription: From a consumption point of view, event streaming technology is 
designed so that increases in the number of subscribers to a topic has a minimal impact 
on the resources. 

Figure 3-24 on page 78 shows event stream scalable consumption.
Chapter 3. Agile integration: Capability perspectives 77



Figure 3-24   Event stream scalable consumption

� Decoupled communication: Communicating by using events removes tight coupling 
between applications in much the same sense that messaging does. Other technologies 
such as REST APIs tightly couple the requester and responder, meaning that the 
immediate availability of the responder directly affects the requester. Event streaming 
provides an intermediary between the two applications, which means that they are 
decoupled. This configuration allows application developers to write components that have 
fewer dependencies on other components at run time.

Event streaming in agile integration 
Let’s look at some of the use cases where event streaming can be used to improve agility in 
modern application landscapes:

� Enable responsive cloud-native applications: Cloud-native applications are being built 
across the enterprise in public and private cloud environments. These applications need 
access to business data that might be on-premises. To deliver a responsive application, 
this business data must be available locally instead of calling to on-premises for each 
piece of data. A local event stream within the cloud can provide this capability. It acts as a 
local data store from which the cloud-native applications can build their own data models, 
decoupling these applications from the core business applications on-premises. 

Event Stream
78 Accelerating Modernization with Agile Integration



Figure 3-25 shows enabled responsive cloud-native applications

Figure 3-25   Enabling responsive cloud-native applications

� Adding real-time data streams to power reactive applications: An enterprise is rich with 
events, and many applications already are creating events. However, without an event 
streaming infrastructure, there is no facility to effectively collect, manage, and distribute 
these events, which inhibit business agility that can be achieved in an event-driven 
integration model. Figure 3-26 shows the addition of real-time data streams.

Figure 3-26   Adding real-time data streams

IBM Event 
Streams

Systems of 
Record

Customer 
Loyalty 

Application

Location

IBM Event 
Streams
Chapter 3. Agile integration: Capability perspectives 79



� Gaining insight from historical data: By listening to and processing an event stream, you 
can gain insights based on time-based event patterns. Furthermore, because event 
streams also provide an event history, you can use this history to train machine learning 
models to progressively evolve the sophistication of the insights, as shown in Figure 3-27. 

Figure 3-27   Machine learning with event streams

3.4  Capability perspective: Files and Business-to-Business

Modern approaches to integration are often focused around synchronous exposure over web 
services and RESTful APIs. It is easy when focused on these patterns to forget that for many 
enterprises, especially in sectors such as retail, there is still significant reliance on traditional 
Business-to-Business (B2B) integration, such as Electronic Data Interchange (EDI).

Can an API-led strategy be used for B2B integration? To what extent can you enable the 
same type of collaborations over APIs between business partners and the enterprise as are 
done by using EDI over a Value Added Network (VAN)? 

Let’s explore this situation from a few different perspectives: architecture, time, and cost. 

� Architecture

B2B data exchanges through EDI have three core technological elements: transport 
protocol, data transformation, and partner management. They also are present in an API 
management capability, such as IBM API Connect, in a slightly different form. 

� Time:

– Rapid onboarding. New partners must be onboarded quickly. Although partner 
management has been a core part of B2B and EDI for some time, API management 
technology has in recent years placed a focus on developer community enrolment to 
support rapid data access and exchange. 

– Development time. Most modern applications already come with an API by default to 
enable them to be more quickly incorporated into new solutions. Furthermore, most 
modern languages can call APIs natively. 

– Real-time information exchange. Traditionally, B2B and EDI patterns were focused 
around supporting messages for purchasing and supply chains. They are often 
batch-based in nature. With an increased business need for real-time data, for 
example, to manage critical path supply chain decisions, APIs better enable real-time 
data exchanges between applications and business partners. 

IBM Event 
Streams
80 Accelerating Modernization with Agile Integration



� Cost: Dedicated B2B networks can be costly to implement from scratch. An API-led 
approach to B2B allows a shared infrastructure that servers both digital application APIs 
and B2B APIs. 

Should Business APIs Replace EDI? goes into more detail about the decision criteria for 
whether an enterprise might replace EDI with APIs. 

We can certainly debate the merits of migrating some or all of an enterprises’ partners over to 
(REST) API interactions. However, traditional integration methods such as EDI are not going 
to disappear just because enterprises’ desire to undergo digital transformation. We must also 
consider how we might modernize the existing B2B interactions. 

A common alternative transport protocol is IBM MQ, which is often used in B2B. However, 
using IBM MQ assumes that your business partner also uses IBM MQ (or a compatible 
messaging client that IBM MQ supports, such as JMS). The use cases for IBM MQ 
connectivity are described in 3.3, “Capability perspective: Messaging and event streams” on 
page 68.

You can use EDI payloads over IBM MQ or HTTP transport and then use App Connect to 
transform the EDI payload. For an example of using EDI standards within IBM App Connect, 
see IBM Integration Bus tutorial: Modeling UN/EDIFACT data using DFDL schemas.

EDI can also be performed over HTTP by using Applicability Statement 2 (AS2). However, 
you likely need a stateful data store to store the Message Disposition Notifications (MDNs). 

However, there will still be circumstances where your business partner must use a traditional 
EDI message set and a VAN. For this scenario, there are a couple of alternative ways that a 
B2B pattern might be implemented to support an agile integration:

� Use a managed service or software-as-a-service (SaaS) product.

The simplest way is using a specialist B2B product as a SaaS or managed service 
solution. The EDI message mappings and a secure (VAN) connection to the business 
partners are then provided by the service. 

There are many providers of B2B and EDI solutions in the marketplace that provide a 
managed or SaaS offering, such as IBM B2B.

The EDI mappings are stored within the SaaS service. The key connectivity consideration 
is then how the B2B SaaS product connects to the core enterprise. You can do so by using 
standard protocols such as IBM MQ or HTTP.

� IBM DataPower Gateway

Within the IBM Integration Technology portfolio, IBM DataPower Gateways can be used as 
a physical appliance, virtual appliance, or run in a container. One of the IBM DataPower 
Gateway variants include support for native B2B EDI protocols, along with an internal B2B 
store.

The use cases for implementing IBM DataPower Gateway are described in 5.4, 
“Integration security: IBM DataPower Gateway” on page 152, and using DataPower 
Gateway supports a use case where EDI and APIs are supported on the same technology 
architecture for B2B integration.
Chapter 3. Agile integration: Capability perspectives 81

https://developer.ibm.com/apiconnect/2018/06/25/should-business-apis-replace-edi/
https://github.com/ot4i/dfdl-edifact-tutorial
https://www.ibm.com/supply-chain/b2b-integration


3.5  Hybrid and multicloud considerations

Hybrid cloud and multicloud often are used interchangeably. The main difference is that with 
hybrid cloud, an organization uses a combination of deployment modes, and with multicloud, 
an organization uses multiple cloud services from more than one cloud provider vendor. 
However, it is becoming more common across companies to adapt both of these approaches. 

3.5.1  Multicloud: Multiple cloud services

Multicloud is a cloud approach to support multiple cloud services from more than one vendor. 
By using it, companies can use the strength and unique offerings from different public cloud 
vendors to achieve portability without cloud platform lock-in, for example, running API 
Connect on both IBM public cloud and Amazon Web Services (AWS). 

3.5.2  Hybrid Cloud: Multiple deployment modes (public, private, and legacy)

Hybrid cloud is a platform for applications and infrastructure that integrates traditional IT with 
a combination of public, private, or managed cloud services. In all its forms, hybrid cloud 
facilitates flexibility and portability for applications and data. With hybrid cloud, companies can 
more effectively manage speed and security, latency, and performance. Every application and 
service can be deployed and managed where it makes the most sense. 

For more information, see What is multicloud?

3.5.3  Evolution of API deployment modes 

In the early days of the API economy era, APIs were classified as internal and external based 
on how they were consumed:

� External APIs: External APIs present the API provider or business an opportunity to share 
certain data sets, services, and capabilities with developers to use the business’s assets 
to develop innovative new applications and allow for existing applications and services to 
be modified. These APIs can be open to any developer who wants to sign up or open only 
to select business partners to have greater control over how the data is used.

� Internal APIs: Organizations use APIs internally or privately to develop new ways of 
operating and managing their business. These internal APIs can be developed to more 
efficiently process internal documents, manage processes, share information, account for 
assets, and other business processes to drive increased productivity. Businesses also use 
internal APIs to build publicly available applications. Internal APIs are the predominant 
category of APIs because most APIs start privately inside organizations and later evolve 
for public or partner access with some rules and restrictions.

Internal and external APIs followed a similar deployment pattern in a traditional DataPower 
workload where external facing DataPower services are hosted in a secure network zone 
and internally in a private or internal network zone. 

� Cloud-based APIs are the new emerging classification that is the natural evolution of the 
external APIs as certain data sets, services, and capabilities are moved across multiple 
cloud environments, either born directly on cloud or migrated. Therefore, it is crucial to 
manage these APIs.
82 Accelerating Modernization with Agile Integration

https://www.ibm.com/blogs/cloud-computing/2018/10/24/what-is-multicloud


3.6  Use cases driving hybrid and multicloud adoption 

Here are some use cases to review by clients considering hybrid or multicloud adoption.

3.6.1  Multicloud strategy

Customers want to use the strength and unique offerings from different cloud vendors, but 
also want to have a consistent operation and runtime environment so that they can achieve 
portability without cloud platform lock-in. 

3.6.2  Cloud bursting and scalability

If you have private cloud environments running on-premises and want to expand the cluster or 
private cloud to an external infrastructure only in certain special conditions (such as load 
testing) or for a bursting workload, hybrid and multicloud topologies can meet these needs.

3.6.3  Disaster recovery

Because the same workload can be easily and quickly provisioned, external cloud providers 
can be a great place to act as a disaster recovery (DR) data center.

3.6.4  Application affinity

Generally, API back ends are distributed across multiple on-premises and off-premises 
clouds. Therefore, you should prefer to deploy APIs near systems of records to reduce 
latency.

3.6.5  Regional flexibility

Exposing APIs from different geographical areas can expand your business into new regions 
because customers expect fast response (low latency) and secure access to APIs from 
anywhere in the world. Geographical distribution of API requests from a physically closer 
cloud unit reduces latency and ensures adherence to local policies that require certain data to 
be physically present within the area or country.

3.6.6  Geographical high availability 

There is a limited value in deploying APIs to another region if the back-end application is not 
present in that region or consumers accessing APIs from different regions. In that respect, 
geographical HA targets both application affinity and regional flexibility concerns and 
increases global availability profile and performance of APIs.
Chapter 3. Agile integration: Capability perspectives 83



3.7  References

For more information about new material that is related to agile integration, see Agile 
integration architecture: Useful links.

The following resources also might be useful:

� Agile integration eBooklet

http://ibm.biz/agile-integration-ebook

� The fate of the ESB

http://ibm.biz/agile-integration-links

� Microservices, SOA, and APIs: Friends or enemies?

http://ibm.biz/agile-integration-links

� The hybrid integration reference architecture:

http://ibm.biz/HybridIntRefArch
84 Accelerating Modernization with Agile Integration

http://ibm.biz/agile-integration-ebook
http://ibm.biz/agile-integration-links
http://ibm.biz/agile-integration-links
http://ibm.biz/HybridIntRefArch
http://ibm.biz/agile-integration-links
http://ibm.biz/agile-integration-links
http://ibm.biz/FateOfTheESBPaper


Chapter 4. Cloud-native concepts and 
technology

Throughout the preceding chapters we have regularly mentioned cloud-native and related 
terms. Although we briefly qualify those terms as they appear, we recognize that some 
readers might be relatively new to cloud-native concepts. Therefore, the beginning of this 
chapter provides an overview of the core cloud-native concepts and technologies. 

For readers familiar with the core concepts, the latter part of the chapter considers some of 
the typical challenges, such as the definition of application boundaries, more advanced 
technologies such as the service mesh, and a look into the future of the cloud-native 
infrastructure. 

The following topics are covered in this chapter:

� Defining cloud-native
� Key elements of cloud-native applications
� Twelve-factor apps
� Container technology: the current state of the art
� Cloud-native is not for everyone, nor for everything
� Realizing the true benefits of containerization
� Application boundaries in a container-based world
� Service mesh
� Cloud-native security – an application-centric perspective
� The future of cloud-native

4

© Copyright IBM Corp. 2020. All rights reserved. 85



4.1  Defining cloud-native

Cloud-native concepts existed before the term itself came into use. The beginning of 
cloud-native was when public cloud vendors began providing easy and affordable access to 
elastic instances of compute power. How can you write applications to capitalize on the 
flexibility of this new infrastructure, and what business benefits can you achieve? 

Cloud-native methods and technology are still evolving, but the core business objectives that 
cloud-native applications set out to achieve remained the same. The business benefits of 
cloud-native are: 

� Agility: Enable rapid innovation that is guided by business metrics. 

� Resilience: Target continuous availability that is self-healing and downtime-free.

� Scalability: Provide elastic scaling and limitless capacity. 

� Cost: Optimize the costs for compute and human resources. 

� Portability: Enable free movement between locations and providers. 

Note that the “cloud” in cloud-native refers to the public cloud and the infrastructure that is 
rapidly self-provisioned, elastically scalable, and has apparently limitless capacity. 
Cloud-native solutions may be built on-premises or in dedicated environments, but it is the 
cloud-based approach to platform provisioning that is important. 

A key reference is the principle of 12-factor applications. Although the 12 factors make no 
claim to be all encompassing guidelines for cloud-native, they are one of the earliest 
examples of how to write applications with a cloud-native intent.

“The twelve-factor app is a methodology for building software-as-a-service (SaaS) apps that:

� Use declarative formats for setup automation, to minimize time and cost for new 
developers joining the project;

� Have a clean contract with the underlying operating system, offering maximum portability 
between execution environments;

� Are suitable for deployment on modern cloud platforms, obviating the need for servers 
and systems administration;

� Minimize divergence between development and production, enabling Continuous 
Deployment for maximum agility;

� And can scale up without significant changes to tooling, architecture, or development 
practices.”1

Despite its age (2011), this list encapsulates many of the key concepts and guidelines for 
cloud-native, and the 12 factors themselves still have relevance even if the specific terms we 
use have evolved in the past few years. It is a useful backdrop, and we describe the 12 
factors in 4.3, “Twelve-factor apps” on page 100.

We should recognize the importance of contributions from early adopters in cloud-native.

Important: Microservices are associated with cloud-native, but they are not equivalent. 
Microservices architecture is a concrete example of how to build applications in a 
cloud-native style.

1  Source: https://www.12factor.net/ 
86 Accelerating Modernization with Agile Integration

https://www.12factor.net/
https://www.cloudcomputing-news.net/news/2017/aug/11/netflix-exemplar-blueprint-cloud-native-computing/


Adopting cloud-native practices enabled companies like Netflix to radically innovate at a pace 
that their more traditionally architected competitors could not, which contributed directly to 
their sustained market leading status today. 

Let’s look at what makes something a cloud-native application.

4.2  Key elements of cloud-native applications

Cloud-native brings together elements that have been developing for years, and in some 
cases decades. Each one of them are beneficial on their own, but together these benefits 
multiply and deliver on the business benefits of cloud-native:

� Modular components: Small, loosely coupled, and minimal interdependencies. They 
enable greater agility and optimization of resources, and provide for more specific 
resilience models. An example is the microservices architecture, which aligns and 
overlaps with many of the other cloud-native characteristics. 

� Prefer stateless: Ideally, components can be re-created by starting a fresh copy of an 
image. Provides elastic scalability and reduces environment configuration divergence.

� Image-based deployment: Lightweight file-based packaging of all local dependencies into 
an immutable image. Improves testing confidence, enables simpler re-creation of 
environments for functional and performance testing, and simplifies problem diagnosis. 

� Lightweight runtimes: The run time starts and stops in seconds or less, reacts instantly to 
workload demands, and enables fast recovery from failure and overall optimization of 
resources.

� Elastic, agnostic infrastructure: Self-service, self-scaling, and self-healing infrastructure 
that runs all workloads in the same way. Removes provisioning processes. Optimizes 
resource costs. Simplifies component deployment and scaling. Improves portability.

� Log-based monitoring: Monitoring by analysis of centralized logs. No direct connectivity to 
live run times. Enables centralized standards-based monitoring capabilities and simplifies 
the run times.

� API-led intra-app communication: APIs for communication among the modular 
components of the application. Standards-based and runtime agnostic, so it enables 
common routing and load balancing and the use of a polyglot of runtime types. 

� Event-driven architecture: Asynchronous patterns where deep runtime decoupling is 
required. Improves availability and reduces response times. 

� Agile methods: Short, business-led iterations from requirements to implementation. Keeps 
the direction of travel in line with business expectations. 

� Continuous Integration and Continuous Delivery and Deployment (CI/CD): Automation of 
the building, testing, and deployment of code to environments. Facilitates rapid 
fine-grained iterations on changes with immediate feedback. Improves consistency of 
code and testing. Reduces deployment risk. 

� DevOps: Near merging of development and operations. Ensures the route to live is short, 
and feedback from production is correctly prioritized. 

Let’s look at each of these items in more detail.
Chapter 4. Cloud-native concepts and technology 87



4.2.1  Modular components

Until relatively recently, to use hardware and software resources efficiently it was necessary 
to build software in large siloed blocks of code. More recent developments in technology, 
containers being a key enabler, have made it realistic to break up applications into smaller 
pieces and run them in lightweight run times. Eventually, these pieces became small enough 
that they deserved a name, and they were termed microservices. These small independent 
microservices components can be changed safely in isolation, scaled individually, and 
managed more ruthlessly.

The core benefits of a more fine-grained microservices approach are:

� Greater agility: They are small enough to be understood in isolation and changed 
independently. 

� Elastic scalability: Each component can be scaled individually by using efficiently a 
cloud-native infrastructure so that their resource usage can be tied to the success of the 
business model.

� Discrete resilience: With suitable decoupling, changes to one microservice do not affect 
others at run time. So, they can provide the resilience that is required by 24/7 online 
applications.

Without question, microservices principles can offer significant benefits under the correct 
circumstances. However, choosing the correct time to use these techniques is critical, and 
getting the design of highly distributed components correct is non-trivial. Deciding the shape 
and size of your microservices components is only part of the story; there is an equally critical 
set of design choices around how fine-grained the components should be and the extent to 
which you decouple them. You must constantly balance practical reality with aspirations for 
microservices-related benefits. In short, your microservices-based application is only as agile 
and scalable as your design is good and your methodology is mature.

In this section, we focused on the fine-grained aspect of microservices. However, to be 
successful with microservices architecture requires a much broader scope than simply 
breaking applications up into smaller pieces. There are implications for architecture, process, 
organization, and more, many of which are also elements of cloud-native, so we cover them 
in later sections.

The microservices architecture is often inappropriately compared to service-oriented 
architecture (SOA) because they share words in common and seem to be in the same 
conceptual space. However, they relate to different scopes. Microservices is about 
application architecture, and SOA is about enterprise architecture. This distinction is critical, 
and is explored further in Microservices versus SOA: How to start an argument.

4.2.2  Preferring stateless

Clear separation of state within the components of a cloud-native solution is critical. It 
enables the orchestrating platform to manage the components in an optimal way. There is a 
strong preference that components should be stateless, and for those that are not, their 
needs must be specified to the platform.

Knowing which components are truly stateless enables the platform to manage them 
differently. For example, it can more ruthlessly start and stop components as required. More 
importantly, it means the platform is free to create many replicas of the component and 
distribute workload across them. The platform can route requests to any existing or new 
replica and expect the same results. 
88 Accelerating Modernization with Agile Integration

https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa


From a design point of view, statelessness means no changes are made to the internal 
configuration or the data that is held by a component after it starts that makes it different from 
any other replica. Nothing should be saved uniquely to a replica that it must remember if it 
were stopped and then started again because this impairs the orchestration platform’s ability 
to manage replicas. 

A simple example of the differences is that stateful components are harder to scale, 
especially scaling down, because state must be re-located. Availability is another example. If 
a whole node (for example, a whole operating system instance) in an environment failed, then 
it becomes much harder (and slower, and possibly even impossible) to re-instate the 
components that were running on that node to a new healthy node. 

Examples of statefulness include:

� Session affinity: Expecting a specific user or consumer’s requests to come back to the 
same component on their next invocation, typically due to specific data caching. This state 
used to be relatively common in web applications but is now discouraged, instead, push 
the state to the client or to back-end systems. 

� Local message queues: If a component has a local message queue that cannot be seen 
by other components, this is component-specific state. If the component stops, these 
messages become orphaned. So, remote queues should be used where possible. 

This concept should not be confused with whether the component interacts with a 
downstream system that holds a state. For example, a component might interact with a 
database or a remote message queue that persists state. However, that does not make our 
component stateful just because the database or message queue that it talks to holds a state. 
It is just passing stateful requests onto a downstream system. If no state is held in the 
component itself, it is still considered stateless. 

The component becomes stateful only if it were, for example, to cache the data in the 
back-end database within the component so that future requests can respond quicker by not 
needing to go all the way to the back-end system. Now, you would have a stateful component 
because different replicas might have different data that is cached. You can quickly see how 
this statefulness would make the component harder to manage. For the cached data to be of 
any real value, you must ensure that requests that are likely to use the cached data go back 
to the same replica. This is an example of session affinity. Suddenly, the orchestration 
platform could not just perform simple load-balanced routing. Instead, it would need to know 
which of the replicas has cached which pieces of data. You can imagine this affinity might 
become even more important and complex when you consider how you would ensure that the 
cache is kept in sync with the back-end systems. 

Ultimately, some components in a cloud-native environment must be stateful; the state must 
be stored somewhere. The point is that the designer of a component should be clear about 
whether it is stateful or stateless, and should understand the design, deployment, scaling, 
and availability issues that might arise should their component be stateful. Platforms such as 
Kubernetes (K8s) have separate mechanisms for handling stateless and stateful 
components. We describe this topic later in this chapter. 

4.2.3  Immutable deployment

Component deployment should be immutable, that is, the component should be deployed 
from a known pre-built image. Following its initial startup, it should then not be further 
configured at runtime. Changes to the configuration should be done by creating an image and 
replacing the components with new ones based on that new image. 
Chapter 4. Cloud-native concepts and technology 89



Image-based deployment is a mechanism for file-based packaging of all local dependencies 
into an immutable image. The image contains more than the code that is required to run the 
component; it also contains the language runtime and enough of the operating system for it to 
be run independently within a container environment. This approach improves testing 
confidence, enables simpler re-creation of environments for functional and performance 
testing, simplifies problem diagnosis, and contributes to the simplicity of elastic scaling.

In Figure 4-1, you can see what is deployed in a release into a traditional versus an 
image-based deployment. 

Figure 4-1   Traditional versus an image-based deployment 

It is easy to see why image-based deployment has the opportunity to create much more 
consistent deployment results because all the dependencies are packaged alongside the 
code. Here are some practical examples that illustrate Figure 4-1:

� Code: This is the code that you write and deploy as a unit. In Java, this is the Java in your 
JAR, EAR, or WAR file. In Node.js, this is the JavaScript in JS files. In IBM App Connect, 
this is the flows, maps, and more in your BAR file.

� Fixed configuration: These are the dependencies on which your code relies. If your code 
is making an HTTP call, this is the HTTP package that you are using. If you are using a 
database connection, these are the ODBC or JDBC classes. It also includes any 
configuration details that do not change from one environment to another. 

� Environment configuration: These are the details that are expected to change from 
environment to environment (they are different in a test environment from what they are in 
production). An example here is if you are integrating with something over HTTP, this 
configuration is the HTTP URL. If you are connecting to a database, then this 
configuration is the host, port, user name, and password.

� Runtime: This is what is running your code. It can be either your Node.js run time, Java 
JRE, Liberty server, or in our case the App Connect run time. It is the run time that 
interprets and runs your coded artifacts.
90 Accelerating Modernization with Agile Integration



Notice how in the traditional environment that an enormous amount is assumed to be already 
present in the environment and (hopefully) correctly installed and configured. The operating 
system, the product and language run time, and the fixed configuration must all be present 
before you can deploy an application to it. 

In the cloud-native approach, your image supplies the application code and all its 
dependencies, including the product and run time, including its dependencies within the 
operating system. You can be sure that what you deliver to any environment is always 
consistent. 

To understand a bit more about the differences, let us look at how you can build and nurture a 
traditional server. We typically build the server by starting with a raw operating system, 
starting the operating system, installing the run time, adding any necessary fix packs, and 
performing any necessary environmental configurations. We might perform some verification 
tests on this server, and then start deploying our applications. 

Figure 4-2 shows an overview of this process.

Figure 4-2   Building and nurturing a traditional sever

All that installation and deployment work had to happen before you could service a single 
request. Over time, you might decide to add further operating system upgrades or fix packs to 
the run time. All these actions had to be done with the server running, and required special 
commands to be run to install or deploy things to the live server. 

What are the challenges of this approach? The build of the server requires many steps that 
involve running proprietary commands on a live running server. These are complex 
commands, and even if they are automated it is hard to be 100% sure that after the sequence 
of commands you end up with exactly the same server configuration in each of a high 
availability (HA) pair or across multiple environments, such as development, test, and 
production. When further ongoing configuration changes and deployments are performed, 
they can potentially result in configuration divergence between environments. This situation 
can lead to the classic diagnosis problem of "Well, it worked in my environment!" Creating an 
exact replica of an environment becomes more difficult the more nurtured the environment is. 
Chapter 4. Cloud-native concepts and technology 91



The alternative is an image-based deployment, as shown in Figure 4-3. Servers are not 
administered when they are live. The installation of the product and its fix packs and the 
addition of applications artifacts are ideally done by laying down files on the file system. This 
action can then be captured as a “container image” and stored in a repository. 

Figure 4-3   Image-based deployment

The image has further metadata, such as what process within the image to run on start and 
which ports to open. From this point, the image is a black box. You do not need to know 
anything about what kind of run time or application code is inside it to start it. If it fails, you can 
reliably and rapidly start a new one. You can consistently start several instances of the same 
image to scale it out if it is designed as a stateless component. (This is how container 
technologies such as Docker work.) 

Building this type of image is relatively trivial compared to a traditional installation process 
because you are adding things to a file system. So, automating this build process is 
straight-forward (for more information about pipelines, see 7.5, “Continuous Integration and 
Continuous Delivery Pipeline using IBM App Connect V11 architecture” on page 465 and 7.6, 
“Continuous Adoption for IBM App Connect” on page 485). You can also build images from 
existing images. For example, you can create a base image with the product run time, a 
standard set of fix packs, and a configuration that you plan to use for all components. You can 
then create further images starting from that base image that includes specific applications. 

4.2.4  Elastic, agnostic infrastructure and container orchestration platforms 

Consider how most traditional servers are deployed as a cluster. How do they handle HA? 
How are their replicas managed, and how is the load spread across them? How are ongoing 
deployments and fix packs handled? There is often a product specific deployment manager to 
handle these tasks. For a traditional WebSphere Application Server, it was called exactly that.

Figure 4-4 shows an overview of traditional servers deployed in a cluster.
92 Accelerating Modernization with Agile Integration



Figure 4-4   Deploying traditional servers as a cluster

As part of your complex installation process, you also had to install the deployment manager 
and tell it where to find the application servers it was going to administer. Then, for all future 
configurations and deployments, you used the deployment manager. You also might have to 
set up a pair of HTTP load balancers to spread the incoming calls across your replicas. In 
short, you had to know much about WebSphere Application Server to set up and run a 
production worthy HA topology. 

In the cloud-native approach, you no longer need the deployment manager. An orchestration 
engine such as K8s works with standard containers to manage administration without 
knowing anything about the internals of a container image. This is the typical programming 
model for the new lightweight runtime of WebSphere Application Server Liberty when it runs 
in containers. 
Chapter 4. Cloud-native concepts and technology 93



Figure 4-5 shows the cloud-native approach to this task.

Figure 4-5   New cloud-native approach: No deployment manager

You can instruct K8s to “deploy” the image, and give it some further standards that are based 
on policy for its non-functional characteristics, for example, a minimum number of replicas for 
initial HA and performance characteristics, and when to create more replicas and up to what 
maximum. Furthermore, K8s provides and automatically configures all the necessary load 
balancing and health checking of containers for you. So, HA is standard feature in K8s. If a 
container fails, K8s re-instates it.

This is a different way of building and running a topology. The benefit is that it enables a 
generic platform such as K8s to create instantly a topology that is based on any image that is 
provided to it, and autonomically and automatically provide HA and scaling for it. If you must 
re-create exactly that setup in another environment, K8s has everything it needs to do so. 
There is no risk of configuration divergence. All environments are started from the same set 
of images, configuration, and policy. 

However, giving K8s a container image is not enough for it to set up and manage the 
topology. You need to provide more information about how many replicas to create and where 
to place them. This information is in a further set of configuration files that are typically in the 
form of Helm Charts and Operators. We describe these concepts in more detail later in the 
chapter. 

Here is another process that the cloud-native approach can do: What if you want to change 
something, for example, you improved the application component design or there is an 
important new fix pack out with a security patch for the run time. You cannot make changes to 
a running server. You cannot attach to a server and run commands against it. If you do, you 
lose all your cloud-native benefits because your live container goes out of sync with the 
image repository and you can no longer easily re-create the environment. 
94 Accelerating Modernization with Agile Integration



Instead, you should use image-based deployment, where any and all changes are done by 
creating a container image, placing it in the image repository, and then instructing K8s to 
refresh it in whichever environment it needs to be applied to. K8s starts a new set of replicas 
based on the new image, and then shuts down the current containers until the new 
configuration is in place. K8s did not need to know anything proprietary about how to deploy 
applications to the run time in the container; it just creates a container from the new image. 

Adopting container orchestration impacts the ways in which your teams interact with the 
environment and the solution. The deployment and administration skills they need are 
container and K8s skills, which largely are consistent across any solution that sits on a 
container-based architecture. As more solutions are moved to containers, your teams gain 
efficiencies and consistencies that are impossible to achieve in a traditional infrastructure. 

You probably now are starting to see some dependencies across different aspects of the 
cloud-native infrastructure. For example, container orchestration only works if you embrace 
image-based deployment, and it is much simpler if your components are stateless. It also is a 
more nimble platform if the containers use lightweight run times.

4.2.5  Lightweight run times

Clearly, modern run times must work well in a cloud-native deployment. Let’s look at the 
typical characteristics of a modern lightweight run time:

� Rapid start: The run time is a single process with no dependencies, and it can be started 
and stopped in seconds.

� File-based installation and configuration: The run time can be installed and configured by 
placing their binary and configuration files on a file system and starting them. 

� File-based application deployment: There is no need to deploy application code to a live 
running server. The application artifacts can be placed on the file system. 

� Small footprint: The run time has a smaller footprint and contains only the necessary 
dependencies, which reduces both its disk and memory footprint. 

The responsiveness and efficiency of the container orchestration platform and the agility of 
the build pipeline for rapid development iterations depends on these characteristics. The 
better suited the run time, the greater the benefits from a cloud-native infrastructure. 

4.2.6  Log-based monitoring

You should not connect directly to individual servers, so monitoring is not done by connecting 
to a live running server. Instead, the servers report by using logging, which is aggregated by 
the platform to provide a monitoring view, as shown Figure 4-5 on page 94. Direct monitoring 
techniques cannot keep up with the constantly changing number of containers. It is not 
appropriate to expect every container to accept regular monitoring requests. 

Note: This description is a slight oversimplification because there are some things that are 
done by contacting running containers. Key examples include simple health checks, which 
are used by the container orchestration platform to determine whether the container is 
functioning correctly and replace it if required. There are also some monitoring techniques 
such as the scraping that are used by capabilities like Prometheus that may directly 
connect to individual containers, but there are subtleties to this pattern that are beyond the 
scope of this chapter.
Chapter 4. Cloud-native concepts and technology 95



4.2.7  API-led intra-application communication

A cloud-native infrastructure encourages more modular deployment, but those fine-grained 
components must communicate among themselves. These calls work across the network. 
Around the same time as the rise in microservices, consensus was forming around RESTful 
JSON and HTTP APIs as a standard means for remote synchronous connectivity between 
distributed components. In cloud-native applications, the general assumption is that 
components expose their capabilities as APIs so that intercomponent calls are 
straightforward. 

There should be a difference between calls across components within the same ownership 
boundary (application boundary) and to components in another ownership boundary. The 
former are local simple calls, but the latter are cross-enterprise calls that need a more formal 
gateway or full API management. For more information about this topic, see 3.1, “Capability 
perspective: API management” on page 42. We describe the differences between API 
management and a newer capability known as a service mesh in 4.8, “Service mesh” on 
page 119.

4.2.8  The reprise of event-driven architecture

Although it is not new, an event-driven architecture is an alternative to APIs to pass 
information between fine-grained components. If you always use APIs to retrieve data from 
other components, you are dependent at run time on their availability and performance, and 
indeed all links in the invocation chain between the two components.

Figure 4-6 shows the communication among microservices within an application.

Figure 4-6   Communication among microservices within an application

Events that use a publish/subscribe pattern can more effectively decouple themselves from 
other components. Components that own data publish events about changes to their 
datastore (created, updates, and deletes). Other components that need that data listen to the 
event stream and build their own local datastore so that when they need the data, they have a 
copy. This process is described as event sourcing.

Pros
Cons
96 Accelerating Modernization with Agile Integration



Although event-based patterns improve availability and performance, they do have a 
downside: They result in copies of the data that must be managed and synchronization with 
the master data. There are various techniques for resolving this issue, but because of the 
nature of asynchronous communication, they all result in the data being eventually consistent 
rather than immediately consistent. So, event-based design should be used only where the 
non-functional requirements dictate it. 

4.2.9  Agile methods

To deliver changes more effectively, there must be synergy between agile methodologies and 
a cloud-native approach. They both enable empowered (decentralized) teams to achieve 
rapid change cycles that are more closely aligned with the business.

Agile methods are contrasted to older more waterfall, methodologies, where an attempt is 
made to gather all the requirements up front, and then the implementation team works in 
isolation until they deliver the final product for acceptance. Although this method enables the 
implementation team to work unhindered by change requests, in today’s rapidly changing 
business environment the final delivery is likely to be out of sync with the current business 
needs. 

Agile methodologies use iterative development cycles and regular engagement with the 
business to ensure that projects stay focused on the business goals. The aim is to constantly 
correct the course of the project as measured against real business needs. Work is broken up 
into business relevant features that can then be prioritized more directly by the business for 
each release cycle. This benefit to the business is when they accept that there cannot be a 
precise plan for what will be delivered over the long term but that they can prioritize what is 
built next. 

We encourage you to explore further material about agile methods at your leisure. 

4.2.10  Continuous Integration and Continuous Delivery and Deployment

You cannot achieve the level of agility that you want unless you reduce the time that it takes 
to move new code into production. It does not matter how agile your methods are if the 
underlying processes are slow. If your feedback cycle is stilted, you cannot react to changes 
in business needs in real time. 

Arguably, the easiest processes to automate are those that are associated with building, 
testing, and deploying code. Continuous Integration (CI) refers to changes that are 
committed to the source code repository and are instantly and automatically built, quality 
checked, integrated with dependent code, and tested. CI provides developers with instant 
feedback on whether their changes are compatible with the current codebase. It also 
encourages regular commits to ensure that you stay in line with other changes happening to 
related components. 

Many of the things that we described so far are enablers for CI. For example, image-based 
deployment enables simpler and consistent build pipelines. Furthermore, the creation of more 
modular, fine-grained, decoupled, and stateless components simplify the automation of 
testing. 
Chapter 4. Cloud-native concepts and technology 97



CD has two possible interpretations with subtle but important differences: CD either stands 
for Continuous Delivery or Continuous Deployment. Continuous Delivery takes the output 
from CI and performs all the preparation that is necessary for it to be deployed into the target 
environment, but it does not deploy it because a final approval step is required before code 
goes into major environments. For many circumstances, Continuous Delivery is as far as full 
automation can go because the risks that are associated with destabilization of major 
environments is too high. However, for some environments, Continuous Deployment to the 
target environments is possible, and it is beneficial because of the further reduction in the 
iteration cycle time.

The dependency ensurance that is provided by container images and the simplicity of their 
deployment through an orchestration platform is key to providing confidence in automated 
delivery and deployment. The consistent approach to HA and scalability of the platform 
provides further comfort that deployments behave as expected. 

The extent to which automation is achievable or appropriate across CI/CD processes varies 
both by organization and project. You must ensure that the technology and the architecture 
do not block automation. You decide the appropriate level of governance of key environments 
and whether you can build sufficient trust in automated processes. 

4.2.11  Continuous Adoption

CI/CD approaches are well documented and increasingly common, although they are not 
ubiquitously adopted. There is another “C” for continuous that is an increasing priority for 
consumers of software: Continuous Adoption (CA). 

Cloud-native was initially led by innovations in the public cloud, but many components and 
tools for cloud-native applications are becoming available for private cloud deployments too. 

One of the challenges for enterprises operating a private cloud is to deliver a cloud-native 
development and runtime platform that keeps up with the accelerated pace of innovation in 
the underlying software components and tools. Public clouds offer these components “as a 
service” on recent version levels, and private cloud operators must do the same. Some 
differences always exist and are necessary, like isolation, governance, and connectivity to 
traditional IT. However, if private cloud services are lagging in capability, enterprise 
developers either suffer from a lack-of-innovation penalty or simply bypass their enterprise’s 
private cloud and expand shadow IT.

Vendors and open source communities increased the pace of production of software. At IBM, 
flagship products like IBM Cloud Paks are on a Continuous Delivery lifecycle, which provides 
at least quarterly or even monthly upgrades, and this is a pattern that is present across the 
industry. This pace provides enterprises faster access to technology innovations and 
essential security fixes. Concurrently, those producers cannot provide support for more 
variations (versions) of an offering and typically support a limited number of versions behind 
the most current one. For example, a minor K8s version is released every three months and 
only the most recent three are supported by the community. 

Although there is plenty to inspire the producer community to accelerate, what has not 
received much attention so far is how consumers deal with this increased pace of upgrades to 
the software they use. Moreover, in many IT organizations, technology upgrades are 
considered harmful. They do not seem to bring sufficient business value, and change creates 
risk. In the face of reducing budgets, upgrades are pushed out until the end of what the 
provider of the technology supports and beyond. However, the technical debt that is built up 
must be paid for at some point. The scale of the problem leads many enterprises to be 
burdened with vast obsolescence management programs.
98 Accelerating Modernization with Agile Integration



Meanwhile one kind of technology update is often mandated: security updates. Under the 
increasing threat of cybercrime, enterprises enforce rapid compliance with the latest security 
patches, which sometimes leads to a forced upgrade of the entire software package.

CA takes a proactive approach so that software consuming enterprises can stay up to date 
and out of support trouble. It is now common practice to have code changes triggering builds, 
integration, testing, and even deployment in a Continuous Delivery approach. Enterprises 
should automate similar CA pipelines that are triggered when vendors or communities 
release new upgrades. After the CA capability exists, enterprises can still throttle the rate of 
adoption to match their appetite for risk. 

Until recently, the risk of change in IT led to stringent change control and a cautious attitude 
towards upgrades. However, as recent studies2 on DevOps show, more lightweight change 
control with more automation drive better software delivery performance, including lower 
deployment failure rates. As software is delivered in smaller increments by providers, the 
perceived risk that is associated with the pain of upgrades reduces significantly. 

With CA, enterprises remove the need for significant migrations programs. 

Furthermore, the move toward more fine-grained and modular components, which are 
exemplified in the microservices architecture, further simplifies the scope of components, 
which reduces the risk when implementing CA of new versions of the underlying 
dependencies. 

In summary, the main reasons for considering CA are:

� Delivering the latest innovations to developers for optimal productivity
� Maintaining security compliance
� Ensuring support availability from providers
� Avoiding shadow IT
� Reducing the risk of upgrades
� Avoiding technical debt

For more information about CA, see Continuous Adoption - keeping current with acclerating 
software innovations.

4.2.12  DevOps

Intrinsically tied to agile methods and CI/CD is a change in the roles of the people that are 
involved in the lifecycle of the components. 

There used to be separate development and operations roles. Developers were not allowed 
near the production environment, and operations staff had little exposure to the process of 
software development. This situation resulted in many challenges, such as the challenges 
and priorities of each group. Code was not written with the realities of production 
environments in mind, which resulted in problems that were hard to diagnose and resolve. 
Operations teams, in an effort to protect their environments, often introduced quality gates 
that further slowed the path to production, which made it even harder for developers to see 
how their code reacts in that environment. 

DevOps takes the approach that we should constantly strive to reduce and possible remove 
the gap between development and operations so that they feel more aligned, and ideally see 
themselves as a single team with the same objective. 

2  Forsggren, et al. Accelerate: The Science of Lean Software and DevOps: Building and Scaling High Performing 
Technology Organizations, IT Revolution Press, 2018, ISBN 1942788339
Chapter 4. Cloud-native concepts and technology 99

https://ibm.biz/ContinuousAdoption
https://ibm.biz/ContinuousAdoption


Clearly, the shortening of the path between development and production by using CI/CD is a 
key part, as is the iterative- and business-focused nature of agile methods. It also means 
changing the type of work that people do. Software developers should play an active role in 
looking after production systems rather than just creating new functions. The operations staff 
should focus on ways to automate monotonous tasks so that they can move on to higher 
value activities, such as creating more autonomically self-healing environments. This 
particular role change is often referred to as a Site Reliability Engineer to highlight the fact 
that they too are software engineers. 

In the perfect DevOps world, there would be only a single team consisting of DevOps 
engineers. Few organizations reach anything close to that point, but many gain significant 
benefit by keeping a focus on reducing the gap between the teams and introducing system 
reliability engineer roles. 

4.3  Twelve-factor apps

The idea of a 12-factor app is associated with the concepts of cloud-native, containerization, 
and microservices architecture. The 12 factors pre-date the mainstream use of container 
technology and microservices. That context is important because it means that we should see 
the 12 factors for what they are: A well-written and long-lived set of guidelines for 
implementing decoupled, scalable, and maintainable application components, but not as a 
definitive list for containerization, microservices or cloud-native concepts. 

With that caveat in mind, in this section we provide:

� A brief summary of the 12 factors because they overlaps with many of the elements of 
cloud-native. 

� Bring the 12 factors up to date by relating them to current technologies that are described 
in this book, such as APIs and containerization. 

� Show how tightly the 12 factors are interrelated to demonstrate how important it is to 
commit to a significant change in approach if you are to gain the benefits of the 12 factors.

Factor 1 - Codebase: One codebase tracked in revision control with 
many deployments
A codebase is defined as a collection of code that is used to build an application. To 
encapsulate the application, the codebase should be stored in only one version control 
repository, such as Git.

Although it is sometimes necessary to share code between applications, each application 
should have its own codebase. Break the shared code into a separate repository that multiple 
applications can share. This shared code can then be imported as a versioned library 
dependency, as described in “Factor 2 - Dependencies: Explicitly declare and isolate 
dependencies”).

The codebase should be the same even when deployed to different environments, as 
described in “Factor 3 - Configuration data: Store environment-specific configurations 
in environment variables” on page 101). 
100 Accelerating Modernization with Agile Integration



Factor 2 - Dependencies: Explicitly declare and isolate dependencies
The additional code libraries your application uses are known as dependencies. Most 
languages these days have some form of dependency or package management tool that you 
use to specify which libraries and versions of libraries that your application relies on. A 
12-factor app never relies on the implicit existence of system-wide packages, such as curl, so 
these dependencies also must be declared. 

The build process can then isolate them in a self-contained executable, as described in 
“Factor 5 - Build, release, run: Strictly separate build and run stages” on page 102, 
which in most modern cloud-native applications means code within a container image. 

Factor 3 - Configuration data: Store environment-specific configurations 
in environment variables
Configuration data is everything that varies between deployment environments. It is now 
know as environment configuration. A common example is the credentials that are required 
for remote resources, as described in “Factor 4 - Backing services: Treat backing services 
as remotely attached resources” on page 101).

How you communicate with your database (for example, over what protocol) always should 
remain constant. However, which database you use often is different on each system, for 
example, the host names, the credentials, the log level, and others might be different.

A 12-factor app must not contain any environment configuration; instead, it picks up the 
configuration from environment variables. Environment variables are easy to change between 
deployments without changing any code. Furthermore, unlike configuration files, there is less 
chance of them accidentally being checked into the code repository. 

Anything that is sensitive should be kept out of the repository. A good litmus test for whether 
you are following these rules is to ask the following question: Can you make this code 
repository open source without exposing anything sensitive or critical? 

K8s provides ConfigMaps and Secrets as places to store environment-specific 
configurations. These locations can be made available inside the containers as environment 
variables or files.

Factor 4 - Backing services: Treat backing services as remotely 
attached resources
A backing service is anything the application consumes over the network for normal 
operation. Examples include datastores (for example, IBM DB2® or MongoDB), and 
messaging and queueing systems (such as IBM MQ).

A 12-factor application should be able to swap out the local backing services for remote ones 
with no code changes. There should be no distinction between local and remote backing 
services. 

The location and credentials of backing services should be stored in environment variables, 
as described in “Factor 3 - Configuration data: Store environment-specific 
configurations in environment variables” on page 101.

In containers, essentially anything that is not in the container can be contacted only remotely 
because it is difficult (and unwise) to attempt to use in-memory invocations on resources on 
the local machine. So, this model is implicitly enforced, and all outbound requests from a 
container look like remote requests even if they are to another container on the same 
machine. 
Chapter 4. Cloud-native concepts and technology 101



Factor 5 - Build, release, run: Strictly separate build and run stages
In a 12-factor app, the code is transformed during its deployment process by using three 
stages that are strictly separated:

� The build stage converts a code repository into an executable bundle that includes the 
code and all its dependencies. This bundle is known as a build. 

� The release stage takes the build and combines it with the deployments’s current 
environment configuration, which is described in “Factor 3 - Configuration data: Store 
environment-specific configurations in environment variables” on page 101. The 
resulting release is ready for immediate execution in the execution environment.

� The run stage starts the app in the execution environment. 

The most important separation is between build and run to ensure that it is impossible to 
make changes to the code at run time and simplify rollback if it is required.

In container technology that uses modern language run times, the build stage can be as 
simple as placing product and language files on to the file system and creating from them a 
container image. That image is then the immutable executable that is deployed to each 
environment. 

Factor 6 - Processes: Run the app as one or more stateless processes
This factor is really about the statelessness of the application process. Twelve-factor should 
not assume that any state is held between invocations. Any data that might be needed in the 
future must be stored in a stateful backing service such as a database.

There can be many instances where a process running for scaling has a high chance that a 
future request will be served by a different process. Even when running only one process, a 
restart (triggered by code deployment, a configuration change, or the execution environment 
relocating the process to a different physical location) wipes all local (for example, memory 
and file system) states.

You can see that this statelessness is embedded into the container model. Containers are 
ephemeral: When they are restarted, a new container is created, and all local memory and 
files are lost. We see the importance of this point when we talk about scaling in “Factor 8 - 
Concurrency: Scale out by using the process model”.

Factor 7 - Port binding: Export services through port binding
Your application process should expose its function only over a defined URL scheme that is 
bound to a port, which commonly means HTTP-based APIs that are based on the OpenAPI 
specification, but other protocols also can be used. Any libraries that are required to perform 
this exposure should be included as part of the application. 

The standardized port-binding approach means that one app can become a resource (see 
“Factor 4 - Backing services: Treat backing services as remotely attached resources” 
on page 101) for another app by providing the URL to the backing app as an environment 
variable (see “Factor 3 - Configuration data: Store environment-specific configurations 
in environment variables” on page 101) for the consuming app.

Factor 8 - Concurrency: Scale out by using the process model
Because you build our application as a stateless process (see “Factor 6 - Processes: Run 
the app as one or more stateless processes” on page 102), you can defer its operational 
management to the surrounding platform. The modern parallel here is with containers running 
as a single process, and container orchestration platforms such as K8s that provide agnostic 
operational management of the container replicas. 
102 Accelerating Modernization with Agile Integration



The platform can manage availability by simply restarting the process (container) whenever 
there are free resources, and scaling by introducing more replicas. This process reduces the 
burden on the application code, which can then focus on the application logic. 

Factor 9 - Disposability: Maximize robustness with fast startup and 
graceful shutdown
The 12-factor app processes must be disposable, which means that they can be started or 
stopped at a moment’s notice. This facilitates fast elastic scaling (see “Factor 8 - 
Concurrency: Scale out by using the process model” on page 102), rapid deployment of 
code or configuration changes, and robustness of production deployments through rapid 
reinstatement. Processes should strive to minimize startup time, ideally to a few seconds, and 
ensure that even on rapid shutdown their termination is graceful. 

The lightweight nature of containers means that the language, product run time, or an 
isolated environment can be started rapidly. Container orchestration then makes the most of 
the lightweight nature of these ideally stateless (see “Factor 6 - Processes: Run the app as 
one or more stateless processes” on page 102) containers to scale and relocate them 
rapidly as necessary to meet the non-functional needs of the application. 

Factor 10 - Dev/Prod parity
Historically, there were substantial gaps between environments, such as the time that is taken 
for new code to reach production, the different people and roles that are involved in working 
the different environments, and even the choice of the backing service technology changing 
from one environment to another.

Twelve-factor apps are designed for Continuous Deployment by keeping the gap between 
development and production small, which implies good dependency management and 
isolation (see “Factor 2 - Dependencies: Explicitly declare and isolate dependencies” on 
page 101), automation of build and deployment (see 4.2.10, “Continuous Integration and 
Continuous Delivery and Deployment” on page 97), overlapping the roles between 
development and operations (see 4.2.12, “DevOps” on page 99), and choosing backing 
services that can be used as effectively in development as in production. Containerization 
helps with this objective because the container image provides a nearly platform-neutral 
program with all its dependencies included. The same image can be run on a developer’s 
machine as easily as it can in a production environment. 

Factor 11 - Logs: Treat logs as event streams
All applications produce logs, which are a stream of time-ordered events that provide 
information about the running process. In traditional implementations, the application is 
concerned with where and how those logs are sent, stored, and analyzed. 

In a 12-factor app, logs should be passed unbuffered to the standard output. The environment 
should decide how to aggregate, route, whether and where to store, and how to visualize 
them. 

This approach simplifies the application (see “Factor 1 - Codebase: One codebase tracked 
in revision control with many deployments” on page 100 and “Factor 2 - Dependencies: 
Explicitly declare and isolate dependencies” on page 101) and enables standardization of 
the approach to logging across the platform. Furthermore, because the application has no 
knowledge of how its logs are used, no code changes are required if the logging technology 
changes.
Chapter 4. Cloud-native concepts and technology 103



K8s does not provide a standardized logging framework, but managed distributions such as 
Red Hat OpenShift do, most commonly implementing the ElasticSearch, Logstash, and 
Kibana (ELK) stack. This stack provides aggregation of logs from multiple types of containers, 
which enables cross-component visualization and problem diagnosis. 

Implicit in this factor is the fact that it is against 12-factor principles to attempt to attach to the 
running application to assess its status for monitoring purposes, especially in K8s where 
containers are constantly being added and removed (see “Factor 9 - Disposability: 
Maximize robustness with fast startup and graceful shutdown” on page 103). The only 
way to know what happened within the application is by processing the historic log stream 
because the container might no longer be present. 

Factor 12 - Admin processes: Run admin/management tasks as one-off 
processes
Throughout the lifetime of your application, you must run one-off processes to migrate your 
database, clean up data, or run a console for introspection. These processes should be run in 
environments as long-running processes to ensure that there are no issues that might occur 
from a different environment. 

These one-off processes run against a release by using the same codebase (see “Factor 1 - 
Codebase: One codebase tracked in revision control with many deployments” on 
page 100), dependencies (see “Factor 2 - Dependencies: Explicitly declare and isolate 
dependencies” on page 101) and the same configuration (see “Factor 3 - Configuration 
data: Store environment-specific configurations in environment variables” on page 101) 
as your application. 

For example, do not run migrations as a separate codebase working directly against a 
database. Instead, have them as part of your code base and let them use the same data 
access path that you normally use in the application.

4.3.1  Conclusion on 12-factor apps

The 12-factor documentation is excellent and should be treated as the source of truth 
regarding this topic, but it is the starting point for understanding cloud-native applications. 

Another useful reference for understanding the 12 factors in a modern context is Michael 
Elder’s regrouped version of the 12 factors.

4.4  Container technology: the current state of the art

Cloud-native is a theoretical concept. Today, most cloud-native applications are written by 
using container technology, which was a distant concept not too long ago. Soon, we might be 
discussing serverless computing. 

So, for now, containers are the most important technology in this space. For that reason, in 
this section we conceptually explain what containers are, and then describe the critical 
related technology of container orchestration, including a brief description of the primary 
technology in this space: K8s.
104 Accelerating Modernization with Agile Integration

https://medium.com/ibm-cloud/kubernetes-12-factor-apps-555a9a308caf
https://medium.com/ibm-cloud/kubernetes-12-factor-apps-555a9a308caf
https://12factor.net


4.4.1  Containers

Containers are a modern approach to software virtualization. Virtualization abstracts software 
from its physical computing environment by putting it into a software wrapper, which makes 
the software more portable.

Virtualization began with the abstraction of operating systems from the hardware on which 
they run, as popularized by VMware. The provisioning of infrastructure by using virtual 
machines (VMs) has become near ubiquitous, and it is now the exception for software to be 
installed directly on baremetal servers. Containers take this abstraction a step further by 
enabling a more fundamental abstraction from the underlying infrastructure and providing a 
much more lightweight and portable virtualization model, as shown in Figure 4-7.

Figure 4-7   Abstraction from infrastructure

Containers further reduce the time, cost, and complexity of setting up a new environment on 
which to run code. 

A container is a file that packages together application code along with all the libraries and 
other dependencies that it needs to run. By packaging together applications, libraries, 
environment variables, other software binary and configuration files, a container ensures that 
it has everything that is needed to run the application regardless of the operating environment 
in which the container runs. 

Co
st

 o
f e

nt
ry

 o
f f

irs
t i

m
pl

em
en

ta
tio

n

Increasing abstraction from infrastructure

Bare Metal

Virtual machines

Containers
Chapter 4. Cloud-native concepts and technology 105



Figure 4-8 shows the difference between VMs and containers.

Figure 4-8   Difference between virtual machines and containers3

A key characteristic of a container is that it is small and fast because it uses some of the 
underlying host operating system's resources to run rather than containing a whole OS of its 
own. As such, many more containers can be placed on hardware than VMs. Furthermore, 
their lightweight nature enables a radically different approach to how they are managed and 
scaled, which align perfectly with the needs of cloud-native applications. 

Containerization is the act of readying an application for distribution in a container by 
packaging its various runtime components together. These components include the relevant 
configuration files, libraries, and software dependencies. The result is a container image that 
can then be run on a container platform. For more information about this process, see this 
YouTube video.

The following sections describe the basic container concepts.

Container image 
A container image is the base for every container that you want to run. Container images are 
built from a Docker file, which is a text file that defines how to build the image and what build 
artifacts to include in it, such as the app, the app's configuration, and its dependencies. 
Images are normally made from other images, making them quicker to build. Let someone 
else do the bulk of the work on an image and then tweak it for your use.

Container
A container is a running instance of a container image. You can make multiple containers 
from the same image. For example, you might do this to create a set of replicas to scale a 
container horizontally. Every container is created from an image, so a container is a packaged 
app with all of its dependencies, and the app can be moved between environments and run 
without changes. Unlike VMs, the running container does not need to virtualize a device, its 
operating system, and the underlying hardware. Only the app code, run time, system tools, 
libraries, and settings are packaged inside the container. Containers run as isolated 
processes on Linux compute hosts and share the host operating system and its hardware 
resources. This approach makes a container much more lightweight, portable, and efficient 
than a VM, and many more containers can be run on a hosts’ resources than can VMs.

3  Source: https://www.docker.com/what-container
106 Accelerating Modernization with Agile Integration

https://www.docker.com/what-container
https://www.youtube.com/watch?v=0qotVMX-J5s


Image registry
An image registry is a place to store, retrieve, and share container images. Images that are 
stored in a registry can either be publicly available (public registry) or accessible by a small 
group of users (private registry). 

4.4.2  Container orchestration

As container adoption increase, so does the need for container orchestration. Containers are 
small and easy to reproduce consistently, and companies tend to use many of them. 
Applications that are written by using, for example, a microservices architecture are broken 
down into many separate components that can run in containers. Furthermore, you can run 
many identical container images alongside each other to scale an application or introduce 
resiliency.

When the number of containers within an organization grows, this situation requires a new 
way of managing software. Traditionally, companies manage fewer physical or virtual servers 
and look after each one with the objective of keeping them running for as long as possible. 
However, containers can and should be managed more as disposable resources, and they 
can be created and deleted quickly to manage scaling and failover scenarios.

Container orchestration capabilities make it possible to handle containers at scale. Container 
orchestration is the process of managing each container throughout its lifecycle and 
encompasses the following additional functions:

� Provisioning
� Redundancy
� Health monitoring
� Resource allocation
� Scaling and load balancing
� Moving between physical hosts
� Security isolation

Today’s most popular container orchestration technology is K8s, and at the time of writing, it 
is the one that most cloud vendors are focused on. Other container orchestrators include 
Apache Mesos and Nomad.

A good overview of why container orchestration is needed is shown in this YouTube video.

4.4.3  Kubernetes primer 

Kubernetes (abbreviated as "K8s," where "8" stands for the 8 characters between 
"K" and "s.") is an open source system for automating deployment, scaling, and management 
of containerized applications.

The name Kubernetes originates from Greek, meaning helmsman or pilot. A deeper 
introduction to what K8s is and is not can be found here: 
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

The K8s platform provides an isolated and secure app platform for managing containers that 
is portable, extensible, and self-healing in case of failovers. 

K8s is based on a variety of distinct “objects”. Objects are persistent entities in the K8s 
system. K8s uses these entities to represent the state. Working with K8s primarily means 
managing objects. Object can be managed via imperative commands or configuration, or via 
declarative configuration. More information on advantages and disadvantages of different 
Chapter 4. Cloud-native concepts and technology 107

https://www.youtube.com/watch?v=kBF6Bvth0zw
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/�
https://kubernetes.io/


object management types can be found here: 
https://kubernetes.io/docs/concepts/overview/working-with-objects/object-managemen
t/

K8s objects are divided in basic abstractions, like a pod, or a service, and higher-level 
abstractions, called Controllers, which are built upon basic objects and provide additional 
functionality. We describe all of the most important abstractions later in this section.

From an architectural perspective, a K8s platform is deployed as a cluster. A K8s cluster 
consists of one or more compute hosts that are called worker nodes. Worker nodes are 
managed by a K8s master node that centrally controls and monitors all K8s resources in the 
cluster. When you deploy workload, the K8s master decides which worker node to deploy the 
workload resources on, accounting for the deployment requirements of that workload and the 
available capacity in the cluster.

To understand K8s, we need to have some understanding of its objects and controllers, and 
their behavior. Some of the main K8s objects and controllers are described in the remainder 
of this section.

Namespace
Namespaces are a way to divide cluster resources between multiple users. Namespaces 
provide a scope for names. Names of resources need to be unique within a namespace, but 
not across namespaces. Namespaces cannot be nested inside one another and each K8s 
resource can be in only one namespace.

Keep in mind that namespaces do not enforce physical or even virtual segregation or 
isolation of resources.

Pod
It is useful to recognize that a container is not a K8s object. Containers are always placed 
within a pod and it is the pod that is deployed, run, and managed by K8s. Pods represent the 
smallest and simplest deployable units in a K8s cluster, and are used to group containers that 
must be treated as a single unit. In most cases, each container is deployed in its own pod. 
However, an app might require a container and other helper containers to be deployed into 
one pod. So, those containers can be addressed by using the same private IP address. K8s 
can use different container runtimes to run containers in pods, with CRI-O (the name derives 
from Container Runtime Interface plus Open Container Initiative) as the default. But Docker 
and Container are also being supported.

Services and Ingress
A service is a K8s object that provides network connectivity to a group of one or more pods. 
Thanks to this service, consumers never need to be aware of the actual private IP address of 
the pods, which of course might be changing regularly. A service can be used to make an app 
available within your cluster or to outside of the cluster. 

When a service provides network connectivity to more than one pod, it also provides basic 
round-robin load balancing across those pods.

Services can have different types, which determine their exposure mechanism. The two 
primary types for K8s services are as follows:

� ClusterIP: Exposes the Service on a cluster-internal IP. This service type makes the 
Service reachable only from within the cluster.

� NodePort: Exposes the Service on each Node’s IP at a static port (the NodePort). From 
outside the cluster, the service can be reached on <NodeIP>:<NodePort>, where the 
108 Accelerating Modernization with Agile Integration

https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/


NodePort can either be assigned randomly by K8s at service creation time, or assigned 
manually or programmatically.

Services can then be further exposed by using an Ingress. Ingress is not a Service type, but it 
acts as the entry point for a cluster. It consolidates routing rules into a single resource as it 
can expose multiple services under the same IP address. An ingress controller is required if 
you choose to expose services as Ingress.

Labels and Selectors
Labels are key/value pairs that are attached to specify identifying attributes of those objects 
that are meaningful and relevant to users, but do not directly imply semantics to the core 
system. Labels can be used to organize and to select subsets of objects. Labels can be 
attached to objects at creation time and subsequently added and modified at any time. Each 
object can have a set of key/value labels defined. Each Key must be unique for a given 
object. Via a label selector, the client/user can identify a set of objects. The label selector is 
the core grouping primitive in K8s.

Volume and Persistent Volume
On-disk files in a container are ephemeral (anything they store to their “local file system” 
cannot be guaranteed to survive a restart). This condition presents some problems for 
non-trivial applications that run in containers:

� When a container crashes, K8s restarts it, but the files are lost.

� When you run containers together in a pod, it is often necessary to share files between 
those containers.

A K8s Volume abstraction solves both problems. A volume is a piece of storage that is 
managed outside of the K8s clusters, and is accessible to the containers in a pod. How that 
storage comes to be, the medium that backs it, and the contents of it are determined by the 
particular volume type used.

In this publication, the types of volumes discussed are as follows:

� NFS (Network File System): An NFS volume allows an existing Network File System 
share to be mounted into a pod.

� RBD (Rados Block Device): An RBD volume allows a dynamically generated Ceph block 
device (https://docs.ceph.com/docs/master/) to be mounted into a pod. 

For a full list of K8s volume types refer to: 
https://kubernetes.io/docs/concepts/storage/volumes/

Additionally, volumes have different access modes, often dependent on the volume type:

� ReadWriteOnce – the volume can be mounted as read-write by a single node
� ReadOnlyMany – the volume can be mounted read-only by many nodes
� ReadWriteMany – the volume can be mounted as read/write by many nodes

When the volume becomes a resource available to and manageable by the K8s cluster, it is 
called a Persistent Volume (PV).

The consistence and persistence of the data on the storage layer is not K8s’ responsibility: it 
is typically delegated to either the storage technology, or to the containerized applications.

Persistent Volume Claim
A Persistent Volume Claim (PVC) is a request for storage by a consumer, typically a 
Deployment (described in “Deployment” on page 110) or a StatefulSet (described in 
Chapter 4. Cloud-native concepts and technology 109

https://docs.ceph.com/docs/master/
https://kubernetes.io/docs/concepts/storage/volumes/


“StatefulSet” on page 110). Conceptually, a Persistent Volume Claim is similar to a pod: pods 
consume node resources, while PVCs consume PV resources. PVC can request specific PV 
type, size, and access modes. When a claim request is created, K8s finds all the available 
Persistent Volumes that match the request, and that have an equal or bigger storage size, 
and binds them to the request. A bound Persistent Volume cannot be used by other objects 
until it is released.

If no matching PVs are found, claims remain unbound indefinitely. Claims are bound as 
matching volumes become available.

ReplicaSet
A ReplicaSet’s purpose is to maintain a stable set of identical pods (a replica) running at any 
given time. As such, it is often used to guarantee the availability of a specified number of 
identical pods. While ReplicaSets were originally created to be used independently, today 
they are mainly used by Deployments as a mechanism to orchestrate pod creation, deletion, 
and updates. 

Deployment
A deployment is a controller that owns other objects (pods) and controllers (ReplicaSets) that 
are required to run an app, and updates them and their pods via declarative, server-side 
rolling updates. When a desired state is described in a Deployment, the Deployment 
controller changes the actual state to the desired state at a controlled rate. 

Deployments can use Persistent Volume Claims to univocally bind its pods and ReplicaSets 
to volumes. If a pod in the replica set crashes and is restarted, the original volume is mounted 
back onto the new pod, which allows the pod to recover its state, if it had persisted that state 
in the volume.

StatefulSet
A StatefulSet manages the deployment and scaling of a set of pods, and provides guarantees 
about the ordering and uniqueness of these pods. It is in essence a particular type of 
Deployment, for applications that require one or more of the following capabilities:

� Stable, unique network identifiers.

� Stable, persistent storage.

� Ordered, graceful deployment and scaling.

� Ordered, automated rolling updates.

Similarly to a Deployment, a StatefulSet can — and most often does — use Persistent 
Volume Claims to univocally bind its pods to volumes. In addition, StatefulSets can assign 
volumes to single pods in the set.

A useful comparison between Deployments and StatefulSets is provided in Table 4-1.

Table 4-1   Comparison between Deployments and StatefulSetsAffinity and anti-affinity rules

Topic StatefulSet Deployment

Replica 
Identification

Ordinal support – Pod name 
consistent across failure

No trivial mechanism – Pod name only exists for 
lifetime of pod. 

Pod 
Management

� Ordered – Completes one by one
� Parallel – Action completed across 

all replicas in parallel

� RollingUpdate – Pods incrementally updated
� Recreate - All pods are killed before new ones are 

created
110 Accelerating Modernization with Agile Integration



Many controllers allow the specification of affinity and anti-affinity rules, and constraint of 
object behavior with other objects with particular labels. For example, you can prevent a pod 
from being deployed on a particular node. The affinity/anti-affinity feature specifies a wide 
range of constraints that can be expressed:

Rules can be “soft”/“preference” rather than a hard requirement. So, if the scheduler cannot 
satisfy it, the pod will still be scheduled constrain against labels on other pods running on the 
node are allowed, rather than against labels on the node itself, which allows rules about 
which pods can and cannot be colocated

The list in this section is not intended to be exhaustive. Instead, it provides a reference for the 
K8s concepts that are used in the practical chapters of this Redbooks publication. A more 
detailed description of these concepts is provided in the K8s public documentation: 
https://kubernetes.io/docs/concepts/#kubernetes-objects

4.5  Cloud-native is not for everyone, nor for everything

All of the preceding benefits sound valuable. Who wouldn't want them, right? Who wouldn't 
want to be able to innovate at the speed of the business, optimize the cost of infrastructure, 
ensure that their applications had the highest possible availability, and not be locked into any 
particular vendor or technology? It's the CIO’s, and indeed the CEO’s dream. 

However, any good CIO, and more so the CFO, knows that all improvements come at a cost. 
Moving to a cloud-native approach costs in time and money. For sure, it has the potential to 
provide enormous benefits in the long term enabling the business to remain competitive, and 
indeed innovate at a pace that brings them to the front of the pack. But it requires investment 
up front, with returns being seen only somewhere in the middle. The more dramatic gains are 
seen after the system is well established. 

Therefore, it should be clear that there are very few companies that adopt cloud-native wall to 
wall. This is all the more true for large long-standing enterprises with a large IT landscape. 
Therefore, we need to clearly recognize where we need the benefits of cloud-native, which 
benefits we need, and then plan accordingly, applying the improvements that make the right 
difference for our particular context. 

This likely means adopting these practices in pockets of the enterprise only, especially at first. 
Applying it to specific applications, initiatives, technology areas and indeed teams.   It also 
means considering what are our priorities, and indeed more granularly, what are the specific 

Updates & 
Scaling

� Rolling Updates 
� Scaling 
� Roll Back – Custom process

� Rolling Updates 
� Scaling 
� Rolling Back 

Persisted 
Volumes

� Volume per pod – Using 
volumeClaimTemplates

� Volume shared between pods – 
Using Persistent Volume Claims

Volume shared between pods – using Persistent 
Volume Claims

Number of pods 
running

K8s assures that no more than the 
maximum number of pods are running, 
unless it is overridden.

The number of pods can be higher or lower than the 
number of replicas in specified (normally higher)

Single resilient 
container

Partial – On node failure the container is 
not automatically restarted.

Container restarted by K8s after configurable delay.

Topic StatefulSet Deployment
Chapter 4. Cloud-native concepts and technology 111

https://kubernetes.io/docs/concepts/#kubernetes-objects


priorities of those pockets of the enterprise – they may not all be the same. As such, we can 
focus on the right actions to ensure we get the right type of benefits at the earliest point in the 
initiative. 

It is beyond the scope of this book to delve into this in much detail, but in the next section, we 
summarize and reference some material that might help in this prioritization

4.6  Realizing the true benefits of containerization

It might be tempting to view containerization simply as an infrastructure upgrade. Perhaps 
likening it to hardware upgrades of the past, or even compared to the move to VMs over the 
last decade or so. This would be a mistake. Such a simplistic view of containers often leads to 
a “lift-and-shift” approach, which misses the whole premise of what containers bring to the 
table. At the very least, it results in poor execution of the containerization exercise. At worst, it 
results in the failure of an entire modernization program. 

Before we start sounding too negative, let us recognize that containerization offers 
wide-reaching benefits across the following areas:

� Agility and productivity: Accelerated development, improved consistency across 
environments, and empowered autonomous teams improve productivity and quality.

� Fine-grained resilience: Independent deployment of HA components remove single points 
of failure.

� Scalability and infrastructure optimization: Fine-grained dynamic scaling and maximized 
component and resource density make the best use of infrastructure resources.

� Operational consistency: Homogeneous administration of heterogeneous components 
reduces the range of skillsets that are required to operate the environments.

� Component Portability: Portability across nodes, environments, and clouds ensures 
choice when you select platforms.

Figure 4-9 shows the benefits of containerization.

Figure 4-9   Benefits of containerization

You should not be surprised to see similarities in the first few of these benefits when you 
compare them to the benefits of microservices architecture described earlier in the chapter. 
The two initiatives are related, though not intrinsically linked. 

Build Agility Team 
Productivity

Fine-grained 
Resilience

Scalability 
and 

Optimization 

Operational 
Consistency

Component 
Portability
112 Accelerating Modernization with Agile Integration



You certainly can achieve the benefits that are mentioned earlier in this document. But you 
must recognize that a move to containers is an opportunity for broader modernization. This 
means making additional changes such as those listed here. 

� Fine-grained components

� Container orchestration

� Disposable components

� Pipeline automation

� Image-based deployment

� Infrastructure as code

� Organizational decentralization

� Agile development methodology

� Self-service developer experience

Many of these are similar, or even the same as the themes we spoke about in our description 
of cloud-native. So again, there is unsurprisingly a significant overlap between cloud-native 
and containers. For this reason, we do not expand on them here, but instead refer you to the 
following article for more details:

https://developer.ibm.com/series/benefits-of-containers

The most important take away here is that you can assess which of the containerization 
benefits are most important to you. Then, you can prioritize which steps to focus on first, 
ensuring a greater likelihood of early gains, and indeed success overall. 

4.7  Application boundaries in a container-based world

In traditional software design approaches, people often refer to IT applications. An IT 
application can be loosely defined as a set of software-delivered capabilities that have a 
specific application in a user context.

As an example, a word processor helps an author to write a book. In this example:

� The user is the author. 

� The user context is writing a book. 

� The IT application is the word editor.

From here onwards, we refer to IT applications simply as applications.

4.7.1  Implicit and explicit boundaries

Historically, from an implementation perspective, the functions of an application were 
contained in one large silo of code. That is often called a monolithic application.

Monolithic applications were deconstructed slightly into tiers but this was more to separate 
different types of code (for example separate presentation code, business logic, and data 
access). Still, each tier contained code that relates to functions that span right across the 
application.
Chapter 4. Cloud-native concepts and technology 113

https://developer.ibm.com/series/benefits-of-containers


Within those tiers, a well-designed application is broken down internally into separate 
components that are responsible for each of the application's functions. However, they still all 
run in the same application server runtime.

Software development and architecture approaches like 12-factor and microservices started 
to advocate for those components to become truly independent. Ideally, they would be 
completely decoupled from each other down to the network level. This is shown in 
Figure 4-10.

Figure 4-10   Separate components that run in the same application server runtime

With these changes in application architectures, an issue started to surface: how to define an 
application boundary.

For monolithic applications the logical boundary of the application corresponded with the 
physical implementation of the application itself. After the application components become 
truly decoupled and independently deployed, the boundary is no longer implicitly present. 
Therefore, if a boundary must exist to group all the application components in a single logical 
construct, that boundary must be explicitly identified and designed in.

4.7.2  Why do application boundaries matter?

It might be tempting to think that we could dispense with application boundaries altogether 
and simply manage business functions granularly. However, anyone with experience of even 
a moderately sized IT landscape recognizes that clear ownership is required at a much more 

Silo
Applications

Silo
ApplicationsSilo
Applications

Silo
Applications
114 Accelerating Modernization with Agile Integration



coarse-grained level than individual business functions. This applies at all stages of the 
lifecycle of an application – analysis, design, implementation, and operational running. 

Application boundaries are important, especially in the context of integration. Figure 4-11 
shows the difference between interactions within an application and those across an 
application boundary. 

Figure 4-11   Difference between interactions within an application, and those across an application boundary

We discuss later that boundaries are primarily about ownership. Within a boundary, a 
relatively close-knit group of people will be involved in implementing and/or administering the 
components. They already know of one another's interfaces where there is probably a level of 
trust between them that means they can offer interfaces without going through a complex 
security model. In many cases, there might be relatively few components that use a particular 
interface. So if it needs to be changed, the impact is minimal. 

Interactions across application boundaries are very different. We would need to be able to 
discover that the interfaces exist in the first place. Since it is owned by a separate group, that 
group will want to have control and insight over who is using it. Since it is likely that it has 
multiple consumers, changes will need to be performed in a more measured way with formal 
deprecation and versioning policies. 

So, it quickly becomes clear that we need to decide what the boundaries are. That way, we 
know when we are crossing them, and we can institute appropriate guidance and control that 
respond to the differences across those boundaries.

4.7.3  How should we choose the application boundaries?

In a cloud-native world, it is easy to see that there are various ways to define application 
boundaries.

A possible approach to define an application boundary would be to look at its domain. A 
software development approach called Domain Driven Design (DDD) advocates developing 
applications and projects based on their domain: a sphere of knowledge, influence, or activity. 
However, multiple applications might pertain to the same domain. So, a domain might be too 
coarse-grained to be used as a boundary for a single application. 
https://en.wikipedia.org/wiki/Domain-driven_design.
Chapter 4. Cloud-native concepts and technology 115

https://en.wikipedia.org/wiki/Domain-driven_design


Following Martin Fowler’s idea, we assume that people’s view of an application is not directly 
related to its architectural design, nor its technology implementation. Instead, they view the 
effect that the application has on people that interact with it: its developers, its users, and its 
sponsor.

In essence, an application is defined by its owners.

Therefore, defining the ownership boundary for an application would help to identify the 
parties, architectural components, and technology implementations that pertain to that 
application.  See Figure 4-12 on page 116.

Figure 4-12   Ownership boundary for an application

Therefore, an application boundary can essentially be defined by the ownership boundary for 
that application.

It is also worth noting that, within an enterprise, multiple application ownership boundaries 
could be part of a single domain. See Figure 4-13.

Note: At this point, it is useful to borrow from Martin Fowler’s thinking on this topic:

Applications are social constructions:

� A body of code that’s seen by developers as a single unit

� A group of functionalities that business customers see as a single unit

� An initiative that those with the money see as a single budget

All of these are social things. We can draw application boundaries in hundred arbitrarily 
different ways. But it's our nature to group things together and organize groups of people 
around these groups. There's little science in how this works, and in many ways these 
boundaries are drawn primarily by human inter-relationships and politics rather than 
technical and functional considerations. To think about this more clearly I think we have to 
recognize this uncomfortable fact. a

a. Excerpt from https://martinfowler.com/bliki/ApplicationBoundary.html
116 Accelerating Modernization with Agile Integration

https://martinfowler.com/bliki/ApplicationBoundary.html


Figure 4-13   Multiple application ownership boundaries part of a single domain

The agreed-upon definition of an application boundary also allows to take a close look at the 
APIs that are exposed by each application component, for simplicity identified as a 
microservice. Most microservices components make their capabilities available via an 
interface such as RESTful HTTP/JSON based APIs. Just as the number of microservices 
components on the network increases, so does the number of exposed APIs on those 
components. See Figure 4-14 on page 117.

Figure 4-14   Microservices capabilities made available via APIs - 1

How can consumers find the APIs they want from the overwhelming set available? Which are 
APIs that should be re-used in other contexts?

Ideally microservices components are completely independent. But, in reality, some are really 
used only in the narrow context of an application. And some others are intended for much 
Chapter 4. Cloud-native concepts and technology 117



wider reuse across the enterprise, and perhaps beyond. However, technically they all look the 
same. See Figure 4-15 on page 118.

Figure 4-15   Microservices capabilities made available via APIs - 2

Intra-application communication (within an application) is logically different from 
inter-application communication (across different applications). Although they may both be 
performed by using web APIs, their scope is radically different, as can be their 
implementation

It becomes clear that a good way to manage such a large number of components is to recur 
to the notion of the application boundary that was introduced earlier. Components within the 
boundary should be able to talk to one another's APIs at will, and then make some APIs 
available only beyond the boundary

Without the notion of an application boundary, there is no enforceable distinction between an 
intra-application API, and an inter-application API. And more importantly, there is no 
indication of ownership and accountability.  See Figure 4-16 on page 119.
118 Accelerating Modernization with Agile Integration



Figure 4-16   Microservices capabilities made available via APIs - 3

Therefore, application boundaries allow you to group components with an owner at the group 
level in addition to the owners at the component level. That way, you ensure a consistent 
design of the overall application. And as a result, you also can differentiate between these 
issues:

� Communication within the boundary, which should be “light touch”

� APIs exposed beyond the boundary, which are destined for broader reuse by consumers 
outside the ownership of the boundary, or even its domain.

Later in this chapter we look at technology-based solutions that help define and enforce 
application boundaries. Furthermore, we would expect to see 3.1, “Capability perspective: 
API management” on page 42 used to expose and manage APIs beyond across these 
application boundaries, though perhaps not within them. We expand on this when we discuss 
the purpose of the service mesh in relation to API management in the next section.

4.8  Service mesh

In traditional applications, communication patterns are usually built into application code and 
service endpoint configuration is usually statically defined per environment. 

As mentioned in the previous section, as application componentization grows and 
applications become more cloud-native, so does the number of components on the network. 
These components, often referred to by the much overloaded term services, typically expose 
APIs to be consumable by other services. 
Chapter 4. Cloud-native concepts and technology 119



Therefore, there is a requirement for an additional infrastructure layer that helps managing 
communication within complex applications that consist of a large number of distinct services. 
Such a layer is usually called a service mesh. 

It is important to note that a service mesh is not an overlay network. A service mesh simplifies 
and enhances how service communicate over the network that is provided by the underlying 
platform.

4.8.1  Role of a service mesh

The aim of a service mesh is to abstract the complexity of inter-service routing away from 
applications and their components, and to manage it at cloud-native infrastructure level. As 
such, a service mesh is a cloud-native infrastructure capability that handles communication 
between services. 

At a high level, a service mesh is responsible for:

� Providing efficient communication between services,

� Abstracting the mechanism for reliable request/response delivery from the application 
code.

� Handling network failures by using, for example, configurable re-try patterns.

� Providing visibility and control of the service-to-service communication.

� Simplifying secure communication between services.

More specifically, typical functional requirements for a service mesh are:

� Service discovery

� Service registry

� Traffic management

� Traffic encryption 

� Observability and traceability 

� Authentication and authorization 

� Failure recovery

Often a service mesh also enables more complex operational capabilities, like A/B testing 
and canary rollouts (both described in 
https://martinfowler.com/bliki/CanaryRelease.html), rate limiting, access control, and 
end-to-end encryption. From a non-functional point of view, all these capabilities are available 
to applications and their components without affecting the application code. As a result, 
developers can leverage them without having to instrument their code.

Finally, a typical building block of cloud-native infrastructure is a container orchestration 
platform, such as K8s. For this reason, it is expected from a service mesh to be able to 
interact natively with K8s controllers and resources, and to enhance their functionality, when it 
comes to service-to-service communication.

Service registry
Modern, cloud-native applications are often highly distributed and use a large number of 
components or microservices that are loosely coupled. In a dynamic, cloud environments 
placement of any service instance can change at any time. So, there is a need for a 
repository that holds current information about which services are available and how they can 
120 Accelerating Modernization with Agile Integration

https://martinfowler.com/bliki/CanaryRelease.html


be reached. This repository is called service registry, and it is used for the service discovery 
that we mention shortly. 

K8s provides implicit service registry by using DNS. When a controller alters K8s resources 
— for example starting or stopping some pods — it also updates the related service entries. 

A service mesh can use K8s’ DNS, or implement a separate service registry.

Service discovery
Container orchestration platforms are constantly starting and stopping components for 
resilience and scaling purposes. As a result, it becomes all the more challenging to be able to 
find instances of the service at runtime. The dynamic routing of the service mesh makes this 
even more complex, so the mesh needs highly effective mechanisms for runtime service 
discovery. 

Service meshes offer two types of service discovery:

� Client-side discovery: A consumer that requests a service network location gets all 
service instances from the service registry, and it decides which one to contact.

� Server-side discovery: A consumer sends a request to a proxy, which routes the request 
to one of the available service instances. 

A service mesh is expected to provide at least one of these two types of service discovery.

It is worth noting that this usage of the term “service discovery” is not universal, but specific to 
service mesh technologies. In an API management context, service discovery is focused on 
how implementers find what services are available at design time. So, for example, 
implementers find services in a developer portal, rather than at run time as defined here for a 
service mesh.

Traffic management
When there are multiple instances of a target service available, the incoming traffic should be 
load balanced between them. K8s natively implements basic round-robin load-balancing 
functionality, for inbound traffic (known as ingress): connecting from outside the mesh to 
services within the mesh.

A service mesh can greatly enhance the traffic management options available in K8s, 
providing more sophisticated and fine-grained traffic management options:

� Reverse proxy capabilities 

� Percentage-based and context-based routing: canary release, A-B testing 
(https://martinfowler.com/bliki/CanaryRelease.html)

� Advanced failure handling: see the section “Failure recovery” on page 122.

In a service mesh, traffic management can be controlled and scoped at different levels:

� Ingress: connecting from outside the mesh to services within the mesh

� Intra-mesh: services within the mesh invoking other services within the mesh

� Egress: services within the mesh invoking services outside of the mesh.

Traffic encryption
Securing traffic between components is an onerous task if performed by the application 
developer, involving deep knowledge of security mechanisms and introducing issues such as 
certificate management. We need the platform to take these challenges of the developers 
hands. 
Chapter 4. Cloud-native concepts and technology 121

https://martinfowler.com/bliki/CanaryRelease.html


In K8s internal data traffic can either be all plain or all encrypted using IPSec. This is a good 
start, but is not granular or flexible enough for many solutions. 

A service mesh allows dynamic encryption of traffic to and from specific services, based on 
policies, and it does not require any changes to the application code. Adopted encryption 
mechanisms are typically using mutual TLS, with the service mesh being responsible for key 
and certificate provisioning and rotation.

Observability and traceability 
In a similar way to which application logs are traced for debugging purposes, there is benefit 
in tracing traffic between services. K8s does not provide tracing capabilities for traffic 
between services. 

A service mesh provides this capability, allowing all traffic to be traced and visualized, without 
any modification to the application code. Typically, a service mesh can interface with 
backends via a number of telemetry adapters, including Prometheus (Metrics), Jaegar 
(Tracing), and Kiali (Mesh visualization).

Access control
K8s, by default, defines network policies that govern which pods can communicate with one 
another, but implementation of network policies is done at the Container Network Interface 
(CNI) network level. 

A service mesh enhances access control up to Layer 7 of the networking stack, providing 
both authentication and authorization at service level.

Failure recovery
When it comes to service connectivity, by default K8s does not provide failure recovery 
capabilities.

A service mesh provides several failure recovery features and patterns, such as:

� Retries – reattempting requests that fail based on a retry policy.

� Timeouts – Releasing calling thread resources after a specified period.

� Circuit breaker pattern – Stopping requests for a cool off period when a downstream 
system seems to be in trouble (https://martinfowler.com/bliki/CircuitBreaker.html).

� Fault injection – Enabling faults to be deliberately introduced into invocation chains during 
testing in order to explore their repercussions. 

4.8.2  Service meshes and API management

As previously discussed in this section, a service mesh is an infrastructure layer that helps 
managing communication within complex applications that consist of a large number of 
distinct services.

This service-to-service communication is typically communication between microservices.

Thus far, we have made no differentiation between these microservices. However, 
microservices are typically grouped into something similar to the application boundaries that 
would have been there, were they written as a traditional siloed application. This boundary is 
of great importance, because it is only within this boundary that we would expect to see a 
service mesh in use. Let’s understand why.
122 Accelerating Modernization with Agile Integration

https://martinfowler.com/bliki/CircuitBreaker.html


In 4.7, “Application boundaries in a container-based world” on page 113, we gave a definition 
of an application as a set architectural components and technology implementations within a 
domain that is part of the same ownership boundary. Consequentially, we used the ownership 
boundary to define the application boundary.

The application boundary was then used to differentiate between intra-application 
communication (which goes between microservices within one application boundary) and 
inter-application communication (which goes across different application boundaries). See 
Figure 4-17.

Figure 4-17   Application boundaries 

In this section, we discuss how the difference between these two types of communication 
reflects into technology implementations.

A first step to explicitly expose specific APIs beyond an application boundary would be to use 
a formal exposure mechanism: for example, a network-accessible K8s service - via ingress or 
node port.

But how do the owners of the microservices make definitions of the APIs that they want to 
expose easily discoverable? How do other consumers explore what APIs are available? How 
will access to the APIs be administered?

A more formal exposure mechanism, like an API gateway, could fulfill those additional 
requirements. See Figure 4-18 on page 124.
Chapter 4. Cloud-native concepts and technology 123



Figure 4-18   Application boundaries with API gateway

The usage of an API gateway enforces a physical implementation of what so far was only a 
logical boundary, based on the social and business notion of the application itself: it mandates 
that communication across applications goes through a formal layer, which is the sole 
gateway to what’s wrapped within the ownership boundary. As a direct consequence, other 
microservices that are owned by a different group — and therefore outside of the boundary — 
should be able to access application components only via this gateway. 

What about the advantages that are provided by a service mesh when it comes to 
service-to-service communication?

They can all be leveraged — if the mesh is used for communication within the application 
boundary — for what we have called intra-application communication. See Figure 4-19 on 
page 125.
124 Accelerating Modernization with Agile Integration



Figure 4-19   Intra-application versus inter-application communication

With this approach, when it comes to inter-application communication within each application 
boundary we can still benefit from the key capabilities of a service mesh:

� Service discovery

� Traffic management

� Traffic encryption 

� Observability and traceability 

� Authentication and authorization 

� Failure recovery

For inter-application communication, services that will be exposed outside of the mesh – via 
the mesh ingress and egress gateways – and guarded by an API gateway. This approach 
enforces the application boundary, of which the mesh itself has no notion. 

An API gateway also comes with additional benefits to the application:

� Gateway load balancing 

� Gateway throttling

� Service mesh entry point security (for example generating tokens)

� Policy enforcement

� Abstraction from internal communication protocols 

Additionally, if the API gateways are part of an API management solution, that solution can 
control how the application makes itself available to other applications within the mesh, 
outside of the mesh, and even beyond the enterprise. It allows consumers to explore the APIs 
available via a developer portal, and to subscribe to an appropriate plan of use for the APIs 
they want to use. Then, at run time, it enables the application owners to recognize, control 
and perhaps even bill differing types of consumers of the APIs. It ensures that all consumers 
Chapter 4. Cloud-native concepts and technology 125



are identifiable, and can be managed separately in terms of traffic, access control, and more. 
It also ensures that the underlying implementations remain abstracted from the way that the 
APIs are ultimately exposed, performing any necessary routing and translation along the way. 
API management is discussed in more detail in 3.1, “Capability perspective: API 
management” on page 42 and Chapter 5.3, “API Lifecycle: IBM API Connect” on page 147.

In summary, a service mesh and an API management solution operate on two logically 
orthogonal planes:

The mesh is a capability that is distributed across the microservices platform. However, its 
use should be scoped such that it is used to take care of fine-grained, intra-application 
communication This is often called East-West traffic.

The API management solution sits on the edge of the mesh. It provides gateways as scoped 
and secured entry points into the mesh to control access to the applications’ internal 
components, thus managing inter-application communication. This communication is often 
called North-South traffic.

Figure 4-20 shows East-West versus North-South traffic.

Figure 4-20   East-West versus North-South traffic - 1

It is important to notice that East-West traffic applies only to intra-application communication. 
The mesh might be physically distributed across a microservices platform that hosts multiple 
applications across different domains. Nonetheless, it is still the ownership boundary that 
dictates what type of interaction is taking place.

When an application boundary is present, the consumption of its APIs by components in 
other applications should not go directly via the mesh. This rule applies even when the 
consumer happens to be another application that is leveraging the same underlying mesh for 
its inter-application communication. Inter-application communication is always by nature 
North-South, and should go through the API gateway. See Figure 4-21 on page 127.
126 Accelerating Modernization with Agile Integration



Figure 4-21   East-West versus North-South traffic - 2

Based on this distinction, it is easy to see where a service mesh and an API management 
solution differ (Table 4-2).

Table 4-2   Differences between a service mesh and an API management solution

However, although API Management and service mesh are logically orthogonal, their contact 
point is in their respective gateways:

� The API gateway for API management

� The Ingress and Egress gateways for the service mesh

It is at these touch points that the two collaborate, to provide consistent management when it 
comes to the numerous shared concerns across the two solutions:

� Shared definition of application APIs

� A shared registry of components within the application boundary

� Consistent traffic enforcement rules

� Consistent access control and authorization

Topic Service mesh API management

Traffic flow Handles East-West / intra-application traffic Handles North-South / inter-application 
traffic

Role regarding services Manages and controls service inside the 
microservices platform

Exposes services and makes them easily 
consumable to other applications and 
consumers

Role regarding internal 
resources

Focuses on brokering internal resources Maps external traffic to internal resources

Location Sits between the network and application, 
without business notion of the application

Exposes APIs or edge services to serve the 
application’s business function
Chapter 4. Cloud-native concepts and technology 127



� Securing of the service mesh

� Policy creation and propagation

� End-to-end traceability and observability

Commercially available API Management solutions are evolving to provide a tighter 
integration with the most popular service mesh implementations. As a result, those shared 
aspects can be defined in API Management yet enforced via the service mesh when they 
cross the application boundary. Specific technology solutions like IBM API Connect and Istio 
are described in more detail in Chapter 4, “Cloud-native concepts and technology” on 
page 85.

For more detailed discussion around service meshes and API management refer to the 
following material:

� https://developer.ibm.com/apiconnect/2018/11/13/service-mesh-vs-api-management/

� https://developer.ibm.com/apiconnect/wp-content/uploads/sites/23/2018/07/API-and-
Microservice-Management-Side-by-Side-PART-1-1.pdf

� https://blog.christianposta.com/microservices/api-gateways-are-going-through-an-i
dentity-crisis/

� https://www.youtube.com/watch?v=53o15ESfpdM

4.9  Cloud-native security – an application-centric perspective

Earlier in this chapter we looked at what makes cloud-native applications different from 
traditional applications. In this section, we’re going to consider what knock on effects this very 
different style of application implementation has on security. 

4.9.1  Scope of this section

Security is a huge topic and we cannot hope to do it justice in this short section. Therefore, 
we focus on the security around application level interactions, because that is where the 
components of an integration portfolio have most relevance.

From a cloud-native application’s standpoint, we primarily look at: 

� Inbound interactions: How do other applications talk to our cloud-native components? 

� Inter-component interactions: How do our components talk to one another? 

� Outbound interactions: How do our components talk to applications beyond our 
cloud-native application’s boundary, especially system still residing on-premises? 

Notice that the preceding focus relies heavily on the idea that there is still a concept of an 
application boundary. This is true, despite the fact that we have potentially broken up what is 
within it into discrete components (for example microservices) that are separate runtimes that 
are sitting on the network. For more on this concept see 4.7, “Application boundaries in a 
container-based world” on page 113.

4.9.2  Limitations of traditional security models 

The strongest security barrier in most organizations has typically been the de-militarized zone 
(DMZ) and its associated firewalls. This provided a double strength barrier between the 
internal networks on-premises and the public internet. The assumption was that the biggest 
128 Accelerating Modernization with Agile Integration

https://developer.ibm.com/apiconnect/2018/11/13/service-mesh-vs-api-management/
https://developer.ibm.com/apiconnect/wp-content/uploads/sites/23/2018/07/API-and-Microservice-Management-Side-by-Side-PART-1-1.pdf
https://blog.christianposta.com/microservices/api-gateways-are-going-through-an-identity-crisis/
https://www.youtube.com/watch?v=53o15ESfpdM


concern came from the significantly higher number and more unknown threats from the 
outside.

This resulted in a way of building security into applications that assumed things about the 
security of this “on-premises” environment. Common examples would include the assumption 
that the internal network was relatively safe from attack so components could be placed there 
with minimal security. 

Figure 4-22   Building security into applications

Figure 4-22 implies that the applications on the internal network have a more relaxed 
interaction security. To be fair, most applications do of course implement some form of 
security pattern that involves a need have credentials in order to connect. But they do not 
have the high garden walls that are provided by the DMZ. Nor do they have firewalls to 
protect against broader types of attack such as denial of service. 

We are now in an era where new solutions are increasingly developed and run in public 
cloud. Furthermore, any solutions that are built on-premises currently should consider that 
they might be moved into the public cloud at some point. This has multiple implications:

� If our application is running in a public cloud, we must consider deep security as a 
fundamental part of our application. 

� We are likely to need to expose our capabilities to other applications that are calling us 
over the public internet.

� We are likely to need data from other applications that are accessible only over the public 
internet. 

Even solutions that are to remain on-premises, we should be thinking differently about 
security. It has been shown that many of the most serious threats actually materialize 
internally rather than from the public cloud, so treating on-premises as a safe zone is 
inherently dangerous. 
Chapter 4. Cloud-native concepts and technology 129



We noted earlier in this chapter that “cloud-native” does not mean “built on public cloud”, it 
means “built using cloud-based principles”. However, if we build a cloud-native solution, we 
should build it to defend against the potential for both internal and external threats. This is 
especially true of security considerations. We need to build our solution such that all of its 
components are appropriately robust to attack. And any barrier to the public internet that 
might be required, we put in place as part of the solution, rather than simply assume that it is 
provided by the environment that we are in. 

4.9.3  Challenges unique to cloud-native

Cloud-native applications are different from tradition applications in many ways as discussed 
earlier in Chapter 2, “Agile integration” on page 5. Notably, they are more fine-grained, 
resulting in more components to secure, each with an attack surface of its own. The 
application might be deployed on a public cloud infrastructure. And this completely different 
way of deploying and administering the application makes it clear that we have some new 
security challenges that must be addressed. 

� Fine-grained components: As components increasingly become more fine-grained, 
interactions that would have been within a runtime are now distributed across the network. 
Indeed, the number of permutations of communication paths has dramatically increased. 
There are many more potential communication paths between these components, but not 
all are valid. Effectively, we could say that all these fine-grained components have a 
potential unique attack surface that we need to consider. We want to make only the 
correct subset of interaction paths possible, but without introducing a significant 
administration overhead. 

� Public cloud: These components might be deployed to public cloud infrastructures. How 
exposed are they to the public internet? We might build initially on private cloud. But we 
would want to design in a way that was ultimately portable to public cloud. So, we need to 
consider this aspect from the beginning. 

4.9.4  Securing a cloud-native application

We now explore an approach to security for cloud-native applications focused as mentioned 
earlier in the scoping section on application level interactions. It comes in four elements:

a. Establish application boundaries

b. Isolate the application

c. Use API management to guard the front door

We describe each of these in more detail in the following subsections.

Part A. Establish application boundaries
As noted in 4.7, “Application boundaries in a container-based world” on page 113 there is 
significant value in considering how to group our fine-grained cloud-native components. We 
used to have a natural grouping that is based on the coarse-grained application components. 
Now we have broken these up into more fine-grained microservices components. 

If we don’t decide on some way to group these together, we are left with the task of defining 
security at the level of every single component. This task would quickly become challenging, 
if not impossible. From many perspectives, and especially that of security, it would be much 
easier to administer these components if application boundaries were defined. This would 
allow us to apply definitions as the application group level rather than individually.  See 
Figure 4-23 on page 131.
130 Accelerating Modernization with Agile Integration



Figure 4-23   Application boundaries

While application boundaries are not essential to this approach, it does make it much easier 
to decide where to use what type of security techniques. 

Part B. Isolate the application 
In the previous section, we very deliberately used the term “logical” application boundary 
because there is nothing yet enforcing that boundary. In reality, the components still float 
around insecurely on the network. 

The first thing that we need to do it to lock down the individual components. It is likely we are 
building our cloud-native solution in a container-based environment. This has the benefit that 
containers by default expose no interfaces.  

Figure 4-24   Isolated components

If we have not explicitly exposed ports in the Dockerfile the containers are inaccessible even 
within the K8s cluster as shown in Figure 4-24 on page 131. 

Within the application boundary, some of the components need to talk to one another. We 
need to open up at least some of the ports on the components. So, we need to work out how 
to avoid those becoming available outside the scope of the application. One option, as shown 
Chapter 4. Cloud-native concepts and technology 131



in Figure 4-25, would be to have all the components of a given application on a dedicated 
network. 

Figure 4-25   Components with open ports, protected by an application-specific network

A container that is deployed within a K8s cluster is not visible beyond the cluster by default, 
which is a good start. However, it would be visible to any other container on the cluster, even 
if it were in a different logical application. Clearly it would be quickly unsustainable to stand up 
a new K8s cluster each time we built a new application. Furthermore, we would lose out on 
the opportunity for infrastructure optimization between applications, which is one of the key 
benefits of using containers in the first place. 

To group containers within a cluster into network spaces for each logical application, we could 
use something like namespaces and associated network policies. Or we could use a software 
defined networking capability such as Calico. 

We have somewhat oversimplified the situation here. In reality, containers on K8s are actually 
exposed via constructs such as NodePorts and clusterIPs. But we do not have the time to go 
to that level of detail in this section, and besides, it is an area that is still maturing. 
Furthermore, there are alternatives as we discuss next. 

Figure 4-26   Explicitly permitted connections

What if we avoid trying to create an application-wide sub network. Instead, we can create 
explicit secure connections between the components within our application that need to talk 
to each other as in Figure 4-26. 
132 Accelerating Modernization with Agile Integration



Clearly this requires more individual configuration effort than the previous mechanism. But it 
does ensure a more well-defined behavior for the application. And this allows the application 
to be deployed to any network and be self-secure. There are mechanisms such as the 
services mesh Istio that we described earlier. Istio can make the preceding approach more 
straightforward. For example, it enables mutual TLS to be defined declaratively as part of the 
overall application code. 

Part C. Use API management to guard the front door
So, now we have managed to lock down the application boundary, and nothing can reach our 
components. However, there are some interactions that we do want to reach our 
components, the most obvious example being any APIs that our overall application might 
want to expose beyond its boundary.

We would want to expose these APIs in a fairly formal and well-governed way and make them 
easy for our consumers to find. Ideally they would want to search for them in a developer 
portal where they could also then subscribe to use them. Therefore, it is likely that this would 
be the place where we would want to use an API management facility. See Figure 4-27 on 
page 133.

Figure 4-27   Use API management to guard the front door

We have discussed the capabilities of API management in detail already in 3.1, “Capability 
perspective: API management” on page 42. We also discussed how API management should 
be used on the application boundary in 4.7, “Application boundaries in a container-based 
world” on page 113, so we need not repeat that here. 

Let’s remind ourselves of the core capabilities that a good API-management product should 
be bringing to the table from this particular application security viewpoint:

� Highly secure and performant, DMZ ready gateway

� Support for authorization delegation frameworks such as OAuth that can be used with 
tokens such as JWT to enable assertion and integrity (discussed next) 

� Throttling of APIs independently per consumer 

� Payload level encryption and signature

Basic encryption on the wire
The most common API protocols for new APIs are REST (Representational State Transfer) 
that uses JSON data format (or sometimes XML). However, there are still many instances of 
the older web services protocol on SOAP (Simple Object Access Protocol). Both of these are 
Chapter 4. Cloud-native concepts and technology 133



typically (though not always) performed over HTTP. It has become commonplace for all HTTP 
APIs to be provided over Transport Layer Security (TLS) to encrypt the communication 
channel. This is an important first line of defense and accomplishes a basic level of 
confidentiality. But further encryption might be needed to provide more specific privacy for 
specific elements of the payload. 

Authentication
Authentication relates to establishing identity. In the case of APIs, it tells us who is calling the 
API. Identity is present at two levels for APIs

� Application: What is the application that is making the calls? The applications is the 
direct consumer of the APIs – the one that actually makes the calls. 

� End user: Who is the end user who uses the application? This is the indirect user of the 
API, always using it via an intermediary application. However, it is their data that is being 
accessed and/or their access privileges that are being used. 

We need these identities for a variety of reasons, as in these examples:

� To verify that their role allows them to perform the requested operation. 

� To enable returning data that is related specifically based on their identity. We explore this 
example soon, when we discuss authorization. 

� To enable us to record profiling information about their usage of the APIs. We can later 
view this data in the aggregate, through analytics. This data might help us to better design 
future APIs, or make decisions about how to promote products, or it could even be used to 
monetize the APIs by billing for their use.

The application identity is the primary identity and that might be enough for some use cases 
such as generic searches against data. The main aim here is generally to stop rogue or 
malicious applications from using the APIs. API management capabilities typically enable the 
use of an application key or client ID that the consumer receives when they first subscribe to 
the API in the portal. This is used in combination with a secret that they receive at the same 
time. The key/secret pair allows the API gateway to authenticate the identity of an application.

The end-user identity is required any time that we want to do something that is user specific. 
For example, before we access a user’s account information, or purchase something on their 
behalf, we first need to know that they are who they say they are. Various authentication 
protocols exist for establishing end-user identity, a common example being OpenID. 

API gateways can be configured to perform user authentication directly or as part of a 
broader flow such as OAuth, which we discuss in the next section. 

Authorization
An authenticated identity alone just tells us who someone is, not what they can do. 
Authorization refers to what actions a given identity is authorized to perform, and in turn, what 
data they are allowed to access. 

There are many options for specific consumer authorization. One of the most commonly used 
today is OAuth, which is an open standard for authorization and delegation. It is based on the 
exchange of an authorization token instead of a password, and it enables access by the 
application on your behalf. It is worth noting that it is now OAuth 2.0 that is typically 
implemented. The preceding OAuth 1.0 is increasingly less commonly supported. OAuth 2.0 
is not backwardly compatible with OAuth 1.0.

Clearly, OAuth requires an identity before it can be used to enable authorization and this often 
happens as part of the higher-level flow, but it is done outside of OAuth itself. A common 
example of an OAuth flow would be where you want to enable an application to post 
134 Accelerating Modernization with Agile Integration



messages on social media. At the beginning of the flow, the application would send you to a 
Facebook authorization page. To get to that screen on Facebook, you must log in to 
Facebook itself (authentication). Facebook then can present a page to you where you agree 
to let the application post on your behalf (authorization). You are then directed back to the 
application, which now has the specific authorization to post only messages and nothing. 
Furthermore, it had not sight of your username/password on Facebook at any time during the 
flow. 

For simplicity, we have skipped over some of the subtlety of the flow, to focus on the key 
points as seen from the user’s perspective. Behind the scenes, there are many important 
details such as how Facebook confirms the identity of the application, safe authorization 
token retrieval, token expiry, token encryption, and so on. OAuth is a sophisticated protocol 
as are all the related standards; complex to learn and easy to implement insecurely. API 
management products aim to simplify these challenges as much as possible, enabling the 
setup of OAuth flows through guided configuration. For an example, see 6.5.3, “Securing the 
API” on page 265.

Tokens
The OAuth protocol does not specify the format of the tokens that are used to hold 
authorization information. 

A common choice is the JSON Web Token (JWT). Ultimately a JWT is just a convenient way 
for transferring a token of data and it is used in many different security-related use cases. 
They can be digitally signed to ensure its integrity, and they are self-describing/self-contained.

One of the key benefits of tokens such as JWT is that they are self-signed. As a result, they 
can be validated without having to go back to the originator, thus reducing the number of 
network interactions needed. This becomes particularly important in cloud-native applications 
where there are many more fine-grained components that each need to validate the tokens 
that they receive. 

However, one of the downsides of the self-contained token is that it is harder to revoke. After 
it is out in the wild, its self-validating nature makes it appear legitimate even if it is not. So, it is 
susceptible to man-in-the-middle attacks. Of course, the best defense against this is to 
reduce the self-contained time so that it expires in as quickly as possible (based on the use 
case). In other words, minimize the attack-opportunity window. 

IBM API Connect provides combined OAuth and JWT capabilities which are discussed in 
detail in 6.5.3, “Securing the API” on page 265.

4.9.5  Hybrid solutions: Securing cloud to cloud and cloud to ground

In this final subsection, we consider how cloud-native applications should connect to other 
applications beyond its boundary. 

The first consideration is how we enable a network path between our cloud-native 
applications that are spread to other clouds, or to our existing system of record on-premises 
(on the ground). 

For illustration, consider the following deployment landscape where we have applications that 
are spread across three network zones: On-premise, IBM Cloud, and Google Cloud. 
Chapter 4. Cloud-native concepts and technology 135



Figure 4-28   Isolated network zones in vendor clouds and on-premises

By default, each is in its own separate network zones that do not allow any inbound 
communication.

As shown in Figure 4-28, from a network standpoint we have options to provide connectivity 
between network zones. These options primarily depend on whether the target applications 
are accessible directly over the internet. 

Figure 4-29   Proving connectivity across different networking zones
136 Accelerating Modernization with Agile Integration



In Figure 4-29 on page 136 we have shown cloud to ground connectivity, for example, hybrid 
connectivity from the cloud to on-premise. But at this conceptual level, the options would be 
largely similar for cloud to cloud. 

Target applications exposed on the internet 
Although many protocols might be exposed on the internet, the most common for reusable 
capabilities today is exposure as APIs as we have discussed earlier in this chapter. From the 
perspective of the consumer – in our case the cloud-native application, this is the easiest way 
for us to consume an application outside our boundary. 

It assumes of course that we have direct access to the internet. This is common, but not a 
given. There might be good reasons to restrict direct internet access to some applications. 

This option is essentially as secure as the security model imposed by the exposed system. In 
the previous section, we discussed potential security models for APIs, with API keys/secrets 
and OAuth as our example. This scenario would likely be further secured at the infrastructure 
level by using further layers of network infrastructure and software such as these:

� Firewalls
� Proxy
� Servers
� Load Balancer

This is the ideal exposure mechanism for wider reuse. Consumers can discover APIs using a 
public portal, and self-subscribe to use them immediately without any involvement of other 
teams on either side. However, from the providers perspective there is some significant effort 
involved — procedurally and infrastructurally — to ensure that the APIs are exposed with 
appropriate security for public reuse. There are circumstances where this extra work and/or 
risk is unacceptable for a given solution. 

Network tunneling for applications that are only privately accessible
The alternative to making applications public accessible is to make a private networking path 
between the applications. Common examples include:

� Encryption tunnels: These provide point-to-point secure communication between 
networks. Traffic is encrypted and transmitted across the internet. IBM Secure Gateway 
on IBM Cloud is an example. This explicitly exposes endpoints within the source network 
that map to a location in the target network. From a security point of view, it has the 
advantage of being more specific about what is exposed across the tunnel. But therefore, 
it has the disadvantage of requiring new configuration for each target/destination involved. 

� VPN: These are network devices or software components that create a secure tunnel 
between networks, across the internet. Components can then see one another directly 
across the two networks, with the VPN connection (rather than the application) taking 
responsibility for ensuring it is encrypted across the internet. By default, a VPN, just like 
dedicated connectivity mentioned next, effectively turns the two zones into a bigger single 
“virtual” network. Clearly this makes things very simple – everything can see everything. 
However, from a security point of view this might not be desirable. Further configuration 
effort might then be required to lock down resources appropriately. 

� Dedicated connectivity: Telecommunication providers supply dedicated physical 
connectivity between the two locations. Communication flows across the 
telecommunication provider’s private network, with no use of the internet. This likely 
enables the highest bandwidth options, but likely comes at a higher cost than the other 
two options and requires physical infrastructure changes. This effectively joins the two 
zones together as if they were one network. As discussed previously, this simplifies 
connectivity, but possibly at the cost of increased risk by exposing more attack surfaces. 
Chapter 4. Cloud-native concepts and technology 137



Product specifics on tunnelling
There are a few special considerations for specific components of the IBM Cloud Pak for 
Integration, both of which fall into the “tunneling” category:

� IBM MQ provides Internet Pass-Through (IPT) which is a SupportPac for IBM MQ, which 
provides proxying capability for MQ traffic. It provides the capability to proxy the MQ traffic 
as is, or convert into an HTTP protocol to meet certain security policies. IPT also provides 
the capability to write extension points so logic can be applied to traffic. This is possible 
only due to IPT understanding the MQ protocol. Network devices commonly need to be 
configured to allow communication to the IPT server at the network boundary. IPT can be 
used in combination of network devices where appropriate and needed.

� IBM DataPower is a hardened security appliance and therefore completes some of the 
same capabilities that are highlighted in the network devices section. Therefore, it might 
be appropriate to delegate some of the network device security aspects to the IBM 
DataPower appliance.

Considerations for Network Tunneling
Generally, the Network Tunneling solution would be established by the network and security 
infrastructure teams when a new cloud environment is added into the enterprise. The 
exception to this is the Encryption Tunnel that is often a bespoke solution that can be quickly 
established for a point-to-point secure solution. The focus of the Encryption Tunnel is allowing 
connectivity from a single remote environment into another environment. Therefore, 
Encryption Tunnels are often not ideal for a multicloud scenario where the number of 
environments can grow or change.

4.10  The future of cloud-native

At the beginning of this chapter, we spoke about how we had moved to increased abstraction 
from hardware, from VMs, and then more recently moved to containers that abstract us even 
from which operating system we are running on. 

We have discussed how containers bring us many benefits, a key one being in terms of 
operational consistency. We need only one infrastructural skillset to manage multiple different 
types of product runtimes, where before they each had their own intricacies such as HA, 
scaling and so on. 

These are big steps forward in terms of infrastructural simplicity and efficiency, and they 
significantly reduce the time and cost to provision infrastructure for new projects. Clearly, we 
have moved into a territory where implementation teams can provision their own 
infrastructure when they need it. See Figure 4-30 on page 139.
138 Accelerating Modernization with Agile Integration



Figure 4-30   Increasing abstraction from infrastructure

However, we are not at the end of the road yet, there is certainly more that can be done. We 
still need to look after the deployed containers. We are still very aware of how many we are 
running, and how they are scaled and secured. 

What if we could completely abstract ourselves even from the management of the runtimes 
themselves. What if we could just the implementation technology, write the code, and then 
give it to the infrastructure to run it, keep it available, scale it, secure it. In effect, this is the 
model that “serverless computing” has adopted – although the name serverless has fallen 
quickly out of favor for reasons we explain shortly. 

4.10.1  Are software-as-a-service applications serverless?

Traditionally, “serverless” means that the users of a capability do not need to have any notion 
of the servers required to run it. This definition has been around pretty much forever in the 
computing industry. Looking at today’s technology, any web-based multi-tenant application 
that we use daily could be described as “serverless”. We could list hundreds of SaaS 
application as examples from Gmail to GitHub, to Workday, Salesforce, and any number of 
social media applications, and so on. 

As a user who subscribes to any of those services, we have no notion of how many “servers” 
are working for us in the background. If we ask the application to do more work for us, it 
scales up invisibly in the background. Our cost model (if we pay for subscription at all) is 
based on user-focused notions of usage, for example, number of users, number of jobs 
submitted, number of invocations made, amount of data transferred, and so forth. Clearly, we 
could find examples of that model as far back in computing as you care to look. However, this 
is not what is typically being referred to when we speak of serverless. Obviously, this term can 
easily be misconstrued. So, a new term was quickly introduced: function-as-a-service (FaaS). 

Co
st

 o
f e

nt
ry

 o
f f

irs
t f

un
ct

io
n

Increasing abstraction from infrastructure

Bare Metal

Virtual machines

Functions

Containers
Chapter 4. Cloud-native concepts and technology 139



4.10.2  Function-as-a-service: a more accurate term for serverless?

The term serverless really became mainstream only around 2015 as you can see from a 
quick look at Google Trends:

https://trends.google.com/trends/explore?date=all&geo=US&q=serverless

Back in 2015, serverless was specifically attached to the idea of being able to write code (a 
function) and then ask an online capability to run that code for you instantly. Any scaling was 
provided scaling invisibly in the background. After the idea was out, key vendors quickly 
came up with hosted services. Amazon Lambda was the first, but was quickly followed by 
Microsoft Azure Functions, Google Cloud Functions, and finally IBM Cloud Functions, which 
were based on the open source project in Apache IBM OpenWhisk®. The next chapter 
focuses on Knative, which standardizes the way we achieve the serverless model in K8s. 

As you can tell from the naming of these capabilities, it quickly became more technically 
appropriate to label this technology “function-as-a-service (FaaS)”. However, if you plot FaaS, 
the term doesn’t rank particularly high. Clearly, “serverless” is still very much in use.

https://trends.google.com/trends/explore?date=all&geo=US&q=serverless,microservice
s,cloud%20native

4.10.3  Could any runtime be provided in a FaaS model?

In theory, yes. For users, the big difference with the model is as follows:

� That the user pays only when a function is running.

� The runtime must dynamically and invisibly manage increases in load. 

For vendors, the efficiency of the FaaS model depends on this: the runtime must scale up 
rapidly (from zero load) and down just as fast. This is of course an oversimplification. Many 
issues affect how easy it is to provide an isolated process space, how code is loaded onto the 
runtime and more. 

4.10.4  FaaS for cloud-native?

It is easy to see how this model is very attractive to cloud-native applications. Look through 
our list of cloud-native elements at the beginning of the chapter. You quickly see how it ticks 
all the boxes, providing benefits in increased agility, fine grained deployment, auto-scaling, 
discrete resilience, and infrastructure optimization. It is perhaps the ultimate in terms of 
enabling a cost model for your infrastructure that scales precisely with the success of your 
business model. 

4.10.5  Are there downsides to FaaS?

FaaS models clearly aren’t suited to every problem. Some of the current problems relate to 
the maturity of the technology and will improve over time, such as the ability to monitor and 
perform fault diagnosis on a platform that you have little access to. Some problems are more 
architecturally fundamental, such as the increased latency for some scenarios. 

Like any model, FaaS has pluses and minuses. Security is a case in point:

� FaaS raises many of the usual cloud-based concerns over where data is kept, who has 
access to production, what is encrypted, how well is it protected from the public internet, 
and so on. 
140 Accelerating Modernization with Agile Integration

https://trends.google.com/trends/explore?date=all&geo=US&q=serverless
https://trends.google.com/trends/explore?date=all&geo=US&q=serverless,microservices,cloud%20native


� It seems reasonable to expect that a FaaS vendor’s be highly effective and trustworthy in 
this space, and that they should have more experience putting the right security patterns 
in place than you do. 

� Furthermore, it is in the vendor’s interest to keep up to date on software versions across 
all aspects of the platform, and do that with minimal or no disruption to users. 

These qualities are akin to the CA that we discussed earlier, but with the FaaS vendor taking 
on the challenge rather than you. 

4.10.6  Conclusions on FaaS

Ultimately whether FaaS is right for your particular initiative is going to depend on the 
preceding factors and more. FaaS models are sufficiently attractive that they continue to 
increase in use. Likewise, the different types of runtimes that become available on FaaS 
platforms is likely to increase. 

In relation to the topic of this book, it is interesting to consider what a FaaS type model would 
look like for integration. For example, IBM App Connect is already available as a fully online 
and managed service. You are charged for the invocations/events passing through and have 
no notion of how many servers might be satisfying that load underneath. Furthermore, IBM 
API Connect can be purchased as a managed service whereby you pay based on the number 
of API invocations. Therefore, the FaaS (serverless) model is already present in the 
integration space, and very well suited to it. 
Chapter 4. Cloud-native concepts and technology 141



142 Accelerating Modernization with Agile Integration



Chapter 5. IBM Cloud Pak for Integration

This chapter provides an overview of IBM integration. The capabilities can be purchased 
collectively as the IBM Cloud Pak for Integration, or individually for any particular capability. 
Each of the products is detailed in the following sections:

� IBM Cloud Pak for Integration
� Red Hat OpenShift Container Platform 
� API Lifecycle: IBM API Connect
� Integration security: IBM DataPower Gateway
� Application integration: IBM App Connect” 
� Enterprise Messaging: IBM MQ
� Event Streaming: IBM Event Streams
� High-Speed File Transfer: IBM Aspera®
� Service Mesh: Istio

5

© Copyright IBM Corp. 2020. All rights reserved. 143



5.1  IBM Cloud Pak for Integration

IBM Cloud Pak for Integration is a simple, complete solution to support a modern, 
multicloud-capable approach to integration. The Cloud Pak for Integration allows 
organizations to power their digital transformation initiatives. With IBM Cloud Pak for 
Integration, you can apply the appropriate organizational models and governance practices to 
support agile integration, simplify the management of your integration architecture, and help 
lower costs. 

Using a container-based approach, IBM Cloud Pak for Integration gives businesses complete 
choice and agility to deploy workloads on-premises and on private and public clouds to 
extend scale, flexibility, and security as needed. It provides the modularity and scalability that 
is required from a modern integration platform to provide the right integration pattern at the 
right time.

The Cloud Pak for Integration contains the following critical integration capabilities:

� API Lifecycle: Create, secure, manage, share, and monetize APIs across clouds while 
you maintain continuous availability. Take control of your API ecosystem and drive digital 
business with a robust API strategy that can meet the changing needs of your users.

� Application and Data Integration: Integrate all of your business data and applications 
more quickly and easily across any cloud, from the simplest SaaS application to the most 
complex systems. You avoid concerns about mismatched sources, formats, or standards.

� Enterprise Messaging: Simplify, accelerate, and facilitate the reliable exchange of data 
with a flexible and security-rich messaging solution that’s trusted by some of the world’s 
most successful enterprises. Ensure you receive the information you need, when you 
need it — and receive it only once.

� Event Streaming: Use Apache Kafka to deliver messages more easily and reliably and to 
react to events in real time. Provide more-personalized customer experiences by 
responding to events before the moment passes.

� High-Speed Data Transfer: Send, share, stream, and sync large files and data sets 
virtually anywhere, reliably and at maximum speed. Accelerate collaboration and meet the 
demands of complex global teams, without compromising performance or security.

� Secure Gateway: Create persistent, security-rich connections between your on-premises 
and cloud environments. Quickly set up and manage gateways, control access on a 
per-resource basis, configure TLS encryption and mutual authentication, and monitor all of 
your traffic.

5.1.1  One platform supported by common services

The Cloud Pak for Integration is one of several Paks that IBM makes available 
(https://www.ibm.com/cloud/paks). Each Pak is built as an enterprise-ready, containerized 
software offering that leverages Red Hat OpenShift as the Kubernetes underlying platform. 

5.1.2  IBM Cloud Pak for Integration - benefits

Beyond the key benefits IBM provides in all Cloud Paks, the integration platform further 
extends those benefits in four key areas:

� Consumability: The Cloud Pak for Integration includes a platform navigator, which is a 
single entry-point for users. It allows users fast access to all of the integration capabilities. 
Through this unified experience, it is simple to navigate across any of the product 
144 Accelerating Modernization with Agile Integration

https://www.ibm.com/cloud/paks


capabilities. Deployment, management, and monitoring are done consistently across all 
integration capabilities.

� Productivity: The asset repository allows users to share integration assets across various 
integration capabilities in the platform. For example, an OpenAPI specification that is 
stored in the repository can be directly imported within the API management user 
interface. 

� Monitoring: The underlying container platform takes care of collecting the logs from all 
components in use. The benefit is that all logs are in one place and the monitoring and 
dashboards are built upon this information. 

� Tracing: By using standards-based OpenTracing, the IBM Cloud Pak for Integration is 
able to provide a consolidated tracing experience whereby the passage of an invocation or 
message can be followed as it passes through any of the integration capabilities. For 
example, a consumer might call an API that is exposed by IBM API Connect. This API in 
turn calls IBM App Connect in order to perform an aggregation across multiple systems. 
We might communicate with one of those systems over IBM MQ. The Pak's integrated 
diagnostics tooling allows us to trace the entire call from end to end. 

5.1.3  License flexibility for other non-containerized architectures

Organizations are on different journeys toward integration modernization, and not everyone is 
ready to embrace a containerized deployment architecture. For this reason, IBM Cloud Pak 
for Integration continues to provide and support traditional software deployment options for 
custom bare-metal and virtual images. Regardless of that choice, the key integration 
capabilities of IBM Cloud Pak for Integration are available in all topologies.

5.1.4  Getting access to IBM Cloud Pak for Integration for the exercises

Many of the chapters in this book assume that the reader has access to an IBM Cloud Pak for 
Integration instance.

If one is not currently available to you, IBM provides ways of provisioning instances on 
demand:

� Through a free-of-charge demonstration environment: 
https://www.ibm.com/demos/collection/Cloud-Pak-for-Integration/

� Through a paid-per-usage enterprise environment: 
https://cloud.ibm.com/catalog/content/ibm-cp-integration

You can benefit from a basic familiarity with Kubernetes concepts, which are discussed in 
4.4.3, “Kubernetes primer ” on page 107.

In order to do the exercises based on IBM Cloud Pak for Integration you need to,

� Install the Cloud Pak command line interface (CLI), which is available at: 
https://www.ibm.com/support/knowledgecenter/SSGT7J_19.4/cloudctl/3.2.3/install_
cli.html 

� Install the OpenShift command line interface (CLI), which is available at: 
https://cloud.ibm.com/docs/openshift?topic=openshift-openshift-cli

� Have access credentials to the IBM Cloud Pak for Integration instance.

� Know the IP addresses of the Kubernetes Nodes that run the IBM Cloud Pak for 
Integration instance.
Chapter 5. IBM Cloud Pak for Integration 145

https://cloud.ibm.com/catalog/content/ibm-cp-integration
https://www.ibm.com/demos/collection/Cloud-Pak-for-Integration/
https://www.ibm.com/support/knowledgecenter/SSGT7J_19.4/cloudctl/3.2.3/install_cli.html
https://www.ibm.com/support/knowledgecenter/SSGT7J_19.4/cloudctl/3.2.3/install_cli.html
https://cloud.ibm.com/docs/openshift?topic=openshift-openshift-cli


5.2  Red Hat OpenShift Container Platform

The IBM Cloud Pak for Integration standardizes on Kubernetes as the container orchestration 
platform. In particular, the IBM Cloud Pak for Integration makes an informed choice to use the 
Red Hat OpenShift Container Platform as the underlying Kubernetes platform, and ships it as 
part of its installation.

In 4.4.2, “Container orchestration” on page 107 the importance of container orchestration was 
discussed. In particular, this book focused on Kubernetes as today’s most widely adopted 
container orchestrator.

Kubernetes is an advanced technology when it comes to container orchestration. However, it 
is generally recognized that Kubernetes on its own is not a complete cloud-native 
microservices platform. Additional capabilities that go beyond container orchestration are 
typically required for a full cloud-native platform.

In this section, we describe the open Kubernetes-based cloud-native microservices platform: 
Red Hat OpenShift Container Platform.

Red Hat OpenShift Container Platform 
(https://www.openshift.com/products/container-platform), or RHOCP, is a platform 
based on Red Hat Enterprise Linux and Kubernetes that focuses on deploying and managing 
containerized, enterprise-grade workloads.

RHOCP is designed to run in multiple scenarios:

� On physical and virtual machines, on and off premises

� On private and public Infrastructure as a Service

� As a managed service by public cloud vendors, such as IBM and Microsoft Azure.

Red Hat OpenShift Container Platform, as shown in Figure 5-1 on page 147, extends 
Kubernetes with a set of capabilities that create a holistic, cloud-native platform for 
containerized applications:

� A container runtime that is compliant with the Open Container Initiative 
(https://www.opencontainers.org/): (CRI-O https://cri-o.io/)

� A container registry

� Monitoring, metering, and logging services

� Deployable application runtimes

� A set of application lifecycle management services

� An automated operations framework, based on operators 
(https://coreos.com/operators/)

� A service mesh based on Istio (see 5.9, “Service Mesh: Istio ” on page 164)
146 Accelerating Modernization with Agile Integration

https://www.openshift.com/products/container-platform
https://www.opencontainers.org
https://cri-o.io/
https://coreos.com/operators/


Figure 5-1   Red Hat OpenShift Container Platform 

These components are preintegrated and tested together for unified operations. RHOCP also 
provides capabilities for hybrid cloud deployments. It can be used across on-premises and 
public cloud infrastructures, enabling a hybrid approach to how applications can be deployed 
as a self-managed solution.

After the cluster and applications are deployed, lifecycle management for these components, 
consoles for operators and developers, and security throughout the entire lifecycle become 
critical. Red Hat OpenShift Container Platform offers automated installation, upgrades, and 
lifecycle management for every part of the container stack — the operating system, 
Kubernetes, and cluster services and applications. The result is a secure, Kubernetes-based 
cloud-native platform, which removes the hindrance of manual and serial upgrades, or 
downtime.

Additionally, the platform integrates tightly with standard continuous integration/continuous 
delivery (CI/CD) tools, and OpenShift’s built-in workflows and tools, for security-focused 
application builds.

5.3  API Lifecycle: IBM API Connect

IBM Cloud Pak for Integration includes integrated API management capabilities with tooling 
for all phases of the API lifecycle. Key steps of the API lifecycle include create, secure, 
manage, socialize, and analyze. It includes the ability to deploy in complex, multicloud 
topologies (both on-premises and on cloud). The latest version also provides enhanced 
Chapter 5. IBM Cloud Pak for Integration 147



experiences for developers and cloud administrators.   The API Lifecycle capabilities are also 
sold separately as IBM API Connect.

API Lifecycle has two main focuses: the first is providing best in class API management 
tooling, and the second is having a cloud native solution. This allows users to create, 
manage, and secure applications that are deployed across a variety of on-premises and cloud 
environments.

5.3.1  Key phases of the API Lifecycle

The following explains the key phases in the API lifecycle in more detail.

� Create: Develop and write API definitions from an API development environment, 
eventually bundling these APIs into consumable products, and deploying them to 
production environments.

� Secure: Leverage the best-in-class API Gateway, gateway policies, and more, to manage 
access to your APIs and back-end systems.

� Manage: Governance structures are built in to the entire API lifecycle, from managing the 
view/edit permissions of APIs and Products being deployed, to managing what application 
developers can view and subscribe to when APIs are deployed.

� Socialize: Leverage an advanced Developer Portal that streamlines the onboarding 
process of application developers, and can be completely customized to an organization's 
marketing standards.

� Analyze: Developers and Product Managers alike are given the ability to understand their 
API traffic patterns, latency, consumption, and more to make data driven insights into their 
API initiatives.

5.3.2  API Lifecycle components

IBM API Connect includes four major components: API Manager, Analytics, Developer Portal, 
and Gateway. These four components can be deployed in a variety of hybrid and multicloud 
topologies. The infrastructure can either be deployed and managed by an IBM team in an IBM 
Cloud environment. Or it can be deployed and managed by the customers in their own 
dedicated environment or third-party cloud. There is also the option for having hybrid 
scenarios, for example, with the API Connect Reserved Instance Offering users are able to 
have their API Manager and Developer Portal running in the IBM Cloud, but then place 
remote gateways next to their back-end services.

In addition to the preceding point, there is a Cloud Manager to manage the IBM API Connect 
topology and a developer toolkit for offline API definition.

API Manager
The API Manager provides a user interface that facilitates promotion and tracking of APIs that 
are packaged within Products and Plans. API providers can move the Products through their 
lifecycle, and manage the availability and visibility of APIs and Plans.

Catalogs and Spaces are created in the API Manager to act as staging targets through which 
APIs, Plans, and Products are published to consumer organizations. API providers can stage 
their Products to Catalogs or Spaces, and then publish them to make the APIs in those 
Products visible on a Developer Portal for external discovery. 

To control access to the available API management functions, users in the provider 
organization can be set up in the API Manager UI with assigned roles and permissions. API 
148 Accelerating Modernization with Agile Integration



providers can also use the UI to manage the consumer organizations that sign up to access 
their APIs and Plans. Additionally, developer communities can be created as a way of 
grouping together a collection of consumer organizations to whom a particular set of Products 
and Plans can be made available.

The API Manager UI also includes functions to manage the security of the API environment, 
and provides access to analytics information about API invocation metrics within 
customizable dashboard views.

API Gateways
Gateways enforce runtime policies to secure and control API traffic, provide the endpoints 
that expose APIs to the calling applications, and provide assembly functions that enable APIs 
to integrate with various endpoints. They also log and report all API interactions to the 
analytics engine, for real-time and historical analytics and reporting. The gateway that is used 
is the IBM DataPower Gateway, which is an enterprise API Gateway that is built for 
departments and cross-enterprise usage. This gateway provides a comprehensive set of API 
policies for security, traffic management, mediation, acceleration, and non-HTTP protocol 
support. It can be deployed as a virtual or physical appliance and supports multiple catalogs 
per instance or cluster. The DataPower Gateway can handle enterprise-level complex 
integration, and supports containers for flexible runtime management.

IBM DataPower Gateway is described in more detail in 5.4, “Integration security: IBM 
DataPower Gateway” on page 152.

Developer Portal
The Developer Portal provides a customizable self-service web-based portal to application 
developers to explore, discover, and subscribe to APIs. 

When API providers publish APIs in the API Manager, those APIs are exposed in the 
Developer Portal for discovery and usage by application developers in consumer 
organizations. Application developers can access the Developer Portal UI to register their 
applications, discover APIs, use the required APIs in their applications (with access approval 
where necessary), and subsequently deploy those applications. 

The Developer Portal provides additional features, such as forums, blogs, comments, and 
ratings, for socialization and collaboration. API consumers can also view analytics information 
about the APIs that are used by an application, or used within a consumer organization. 

API Analytics
IBM Cloud Pak for Integration provides the capability to filter, sort, and aggregate your API 
event data. This data is then presented within correlated charts, tables, and maps, to help you 
manage service levels, set quotas, establish controls, set up security policies, manage 
communities, and analyze trends. API analytics is built on the Kibana V5.5.1 open source 
analytics and visualization platform, which is designed to work with the Elasticsearch 
real-time distributed search and analytics engine. 

Cloud Manager
The API Connect Cloud Manager component is used to manage the API Connect 
on-premises cloud. The Cloud Administrator uses this UI to:

� Define the cluster of Management servers, Gateway servers, and containers that are 
required in the cloud, and configure the topology. 

� Manage (modify, move, remove, restart, reboot) the servers in the cloud.

� Monitor the health of the cloud.
Chapter 5. IBM Cloud Pak for Integration 149



� Define and manage the provider organizations that develop APIs. (Assigned managers or 
owners of provider organizations can also complete this task.)

� Define additional cloud administrators, or set up users with roles that enable access to 
specific capabilities.

� Add user registries for authenticating users and securing APIs, and configure the secure 
transmission of data (for example, through websites).

The developer toolkit
The developer toolkit provides the tools for modeling, developing, and testing APIs and 
LoopBack® applications. The developer toolkit is installed locally, for offline API development. 
It includes a command line interface (CLI). It also incorporates LoopBack, an open source 
Node.js framework to enable rapid creation of Node.js implementations.

API developers use the API management functions in the API Manager or the CLI to create 
draft API definitions for REST and SOAP APIs, or for OAuth provider endpoints that are used 
for OAuth 2.0 authentication. The API definitions can be configured to add the API to a 
Product, add a policy assembly flow (to manipulate requests/responses), and to define 
security options and other settings. APIs can then be tested locally before they are published, 
to ensure that they are defined and implemented correctly. 

For more information on IBM API Connect, see the IBM Knowledge Center:

https://www.ibm.com/support/knowledgecenter/SSMNED_2018/com.ibm.apic.overview.doc/
api_management_overview.html

5.3.3  API lifecycle in combination with other capabilities

When we make a statement that IBM API Connect is deployed into a particular 3rd party 
cloud, we might actually mean a few different things. For example, the topology might be 
customer managed (in the same way that it would be, if it were on-premises), or it might be 
managed by IBM. It might be a public managed platform where it is shared with other 
customers, or it might be dedicated/reserved for the customer. In this section, we walk 
through the various possibilities of what deploying to cloud can mean, and their relative 
benefits. 

API lifecycle capabilities such as those in IBM API Connect were introduced specifically to 
focus on the management and secure exposure of APIs. This is described in some detail in 
3.1.1, “A brief history of API management” on page 42. As such, the API gateway should 
deliberately focus on only a very specific subset of integration capabilities to back-end 
systems, generally limited to HTTP based RESTful and web service based interactions. IBM 
DataPower Gateway’s capabilities are somewhat broader than this as described in the next 
section, but still, we would generally expect to use some additional, architecturally separate 
integration capability to perform deep integration to systems that cannot surface APIs 
themselves. 

For this reason, IBM API Connect is often used in combination with IBM App Connect, which 
provides the richest set of application integration capabilities. The capabilities cover a broad 
range of protocols, composition and mapping, and data formatting possibilities. This is also 
part of the Cloud Pak for Integration and is described in 5.5, “Application integration: IBM App 
Connect” on page 155.

Specifically, for mainframe connectivity it is worth considering the pros and cons of the many 
options that are available — including z/OS Connect EE —to surface mainframe data and 
functions as APIs. An excellent reference on this topic is IBM Redpaper IBM Z Integration 
150 Accelerating Modernization with Agile Integration

https://www.ibm.com/support/knowledgecenter/SSMNED_2018/com.ibm.apic.overview.doc/api_management_overview.html


Guide for Hybrid Cloud, REDP5319 
(http://www.redbooks.ibm.com/abstracts/redp5319.html?Open).

5.3.4  Product deployment options

When we make a statement that IBM API Connect is deployed into a particular 3rd party 
cloud, we might actually mean a few different things. For example, the topology might be 
customer managed (in the same way that it would be, if it were on-premises), or it might be 
managed by IBM. It might be a public managed platform where it is shared with other 
customers, or it might be dedicated/reserved for the customer. In this section, we walk 
through the various possibilities of what deploying to cloud can mean, and their relative 
benefits. 

IBM API Connect installations are provided in Container/Kubernetes and OVA VMware form 
factors to run virtually anywhere. Keep in mind that OVA installations are based on 
Kubernetes internally, giving customers some of the benefits of a cloud-native solution 
without having to install their own Kubernetes environment.

Therefore, IBM API Connect can be deployed with Kubernetes, IBM Cloud Pak for 
Integration, and OVA (VMWare) and Red Hat OpenShift for maximum flexibility to enable a 
true hybrid or multicloud adoption.

IBM API Connect is available in three different deployment options described in this list: 

1. IBM Managed API Connect on IBM Cloud

IBM API Connect is available on IBM Cloud in three different options, which gives you 
different flexibility and isolation options:

a. IBM Cloud Public: This format leverages the advantages of hosting the services on 
the public IBM Cloud architecture. The Public cloud includes the following key features:

• No additional hardware requirements.

• No special firewall requirements.

• Easy to pair with other IBM Cloud services.

b. IBM Cloud Dedicated: Cloud Dedicated is a Cloud environment that is set up 
specifically for your organization and is managed by the IBM operations team. The 
Cloud dedicated deployment includes the following key features:

• No additional hardware requirements.

• A single-tenant environment that enables a higher level of stability.

• More security because you are removed from the public cloud.

c. IBM API Connect Reserved Instance: This option offers an individual API Connect 
instance that runs on IBM-managed infrastructure. Reserved Instance provides value 
by balancing the flexibility of a shared in Reserved Instance infrastructure with the 
isolation of a single-tenant deployment based on the topology and functionality of API 
Connect. Reserved Instance offers the following key features:

• Common log-in with other IBM services that use IBMid.

• Isolation from other users of the IBM Cloud public service.

• Managed, monitored, and operated by the API Connect operations team.

• Deployed across multiple pods within the datacenter-zone for resilience.

• Optionally deployed as a High Availability (HA) deployment with a 99.95% SLA, for 
an additional cost.
Chapter 5. IBM Cloud Pak for Integration 151

http://www.redbooks.ibm.com/abstracts/redp5319.html?Open


2. Customer Managed API Connect on-premises or on any cloud

You have the flexibility to deploy on any cloud infrastructure by using these tools:

• Kubernetes

• Red Hat OpenShift (with the option to use the consolidated administrative user 
interface provided by the IBM Cloud Pak for Integration)

• VMware (also Kubernetes inside) 

The table at the following site provides a convenient comparison of these different options:

https://www.ibm.com/support/knowledgecenter/en/SSMNED_2018/com.ibm.apic.overview.d
oc/rapic_overview_apic_formats.html

5.4  Integration security: IBM DataPower Gateway

The Integration Security component helps provide security, control, integration, and optimized 
access to a full range of mobile, web, application programming interface (API), 
service-oriented architecture (SOA), B2B, and cloud workloads. As noted above, it is used as 
the API Gateway component within API Lifecycle, but it has much broader capabilities than 
just API exposure as we discuss in this section. The Integration Security capabilities are also 
sold separately as IBM DataPower Gateway. It is available in physical, virtual, cloud, Linux, 
and Docker form factors.

The Integration Security capabilities are extensively used in the industry and its usage can be 
broadly categorized into the following patterns:

� Security Gateway placed between the firewalls, as shown in the next figure

� API gateway, both as internal and external gateway

� Providing connectivity and mediation services in the internal network, close to the systems 
of record 

Figure 5-2 shows DataPower usage patterns.
152 Accelerating Modernization with Agile Integration



Figure 5-2   DataPower usage patterns

Let’s discuss the patterns in detail.

5.4.1  Security Gateway

DataPower is purpose-built, DMZ-ready, and is used for converged policy enforcement and 
consistent security policies across business channels. As a result, you reduce operating 
costs and improve security. DataPower can, 

� Protect against unwanted access, denial of service attacks, and other unwanted intrusion 
attempts from the network

� Verify identity of network users (identification and authentication) 

� Protect data and other system resources from unauthorized access (authorization)

� Protect data in the network by using cryptographic security protocols:

– Data endpoint authentication

– Data origin authentication

– Message integrity

– Data confidentiality

� Provide proxying and enforcement:

– Terminate incoming connection

– Terminate transport-level security (SSL/TLS offload)

– Threat protection

– Enforce service level agreement policies

– Inspect message content and filter (Schema validate) 
Chapter 5. IBM Cloud Pak for Integration 153



DataPower also supports important security standards like OIDC, OAuth, WS-Security, JWT. 
As it is based on configuration-driven policy creation, it provides extensible platform to 
provide first grade security to the enterprise applications with minimum development effort.

For example, in Figure 5-2 on page 153 the DataPower in the DMZ provides consistent and 
advanced security gateway for the downstream applications. Without the secure gateway, 
these applications would have to develop enterprise grade security in order to expose or use 
external services. The overhead of building and managing of hardened security module can 
be avoided by using a secure gateway.

5.4.2  API Gateway

As an API Gateway the integration security capabilities are used for exposing internal APIs to 
consumers. It acts as a façade for the internal APIs as it has features like:

� Web services infrastructure needed to support highly secure data routing with daily high 
volume and sensitive nature of information.

� Centralized service governance and policy enforcement, as discussed in the above point.

� Service level monitoring (SLM) to protect your services and applications from 
over-utilization and enforce quota.

� Application optimization, which leverages dynamic runtime conditions to distribute based 
on topology and workload.

5.4.3  DataPower and agile integration

DataPower as a gateway inevitably performs a certain level of the underlying integration. But 
from an architectural point of view it would be unwise for it to be attempting to do all 
integration patterns. We need to consider what are its sweet spots, and where we should be 
delegating to deeper integration capabilities. Lets look at some of the integration capabilities 
that are provided by the gateway, and then when the crossover should occur to other 
technologies.

� Security Gateway: DataPower is obviously an excellent choice for the security aspects of 
a gateway, providing controlled, restricted access to downstream systems. Indeed, the 
physical appliance is often chosen to provide security gateway functionality as delivers up 
to 2X the performance of IBM DataPower Gateway (IDG). It has tamper proof hardware 
and software and can have a factory-installed hardware security module (HSM). An HSM 
provides secure storage for RSA keys and accelerates RSA operations. Due to these 
important security features, physical devices are preferred in the production 
environments. 

� API gateway: With the rise in federated middleware and decentralized ownership, there is 
a marked increase in applications wanting to expose their APIs to other applications via 
their own infrastructure. Building enterprise grade custom API gateway is neither feasible 
nor desirable. IBM API Connect is a scalable API platform that allows creation and 
management of APIs securely across clouds. Section 5.3, “API Lifecycle: IBM API 
Connect” on page 147 discusses in detail the differences between DataPower and IBM 
API Connect and the benefits that a broader API management solution brings. 

� Deep integration: DataPower provides configuration led easy path for integrating with 
various Systems of Record via out-of-the-box adapters for a selection of technology 
protocols, easy transformation and routing rules. However, DataPower it is not a general 
purpose integration capability. IBM App Connect is the premier integration solution 
covering the broadest range of protocols and mediation capabilities. In the next section, 
we explore IBM App Connect in more detail. There are also capabilities such as IBM z/OS 
154 Accelerating Modernization with Agile Integration



Connect that make mainframe data and functions available over REST HTTP APIs. These 
can then be future exposed by an API gateway such as IBM API Connect, for example in 
order to add API management capabilities. For more information on the options for 
connecting to mainframes, see the IBM Redpaper IBM Z Integration Guide for Hybrid 
Cloud and the API Economy, REDP5319 
(http://www.redbooks.ibm.com/abstracts/redp5319.html?Open).

5.5  Application integration: IBM App Connect

IBM Cloud Pak for Integration includes a market-leading application integration capability. It 
enables the implementation of API and event-driven integrations and provides extensive 
adaptation to on-premises and cloud-based applications. It provides tooling that is optimized 
to the users' skillsets, so that they can be productive in a matter of hours and achieve real 
results in days. Powerful underlying capabilities facilitate the implementation of even the most 
complex integration patterns. As a result, data can be moved quickly, accurately and robustly. 
The Application Integration capabilities are also sold separately as IBM App Connect (and 
previously Integration Bus). 

IBM Cloud Pak for Integration delivers a range of application integration capabilities and 
features including theses: 

� The ability to build and expose APIs through a no-code approach that can be easily 
managed through an API Lifecycle (discussed in 5.3, “API Lifecycle: IBM API Connect” on 
page 147)

� Extended connectivity across Cloud Services, Software as a Service (SaaS), cloud 
platforms, and on-premises applications 

� Lightweight integration runtimes for cloud native and container-based deployment 

� Deployment options that can enable clients to achieve a balance between control, 
management overhead, and budget

� New, simple tooling for all styles of user that works together to expose and integrate 
enterprise systems 

5.5.1  User-aligned integration tooling 

The Application Integration features include an upgraded desktop user interface that is 
coupled with new award-winning browser-based tooling. Together, they bring together the 
teams that own and manage the data with those that have the context to apply it. Digital 
businesses rely on data that is delivered in the right context, to the right client touch point, at 
the required time. The tooling provides frictionless access to enterprise data at the front line 
of the clients' business, whether those individuals are in IT or citizen integrators in the line of 
business. 

It provides new integrated tooling experiences for the spectrum of users across the digital 
enterprise: 

� For the core IT teams that manage the key systems and packaged applications, there is a 
rich tooling experience to support all styles of interaction, powerful mapping, parsing, and 
transformation. A broad range of functions — including built-in unit testing and the ability 
to perform pre-deploy validation, alongside linked browser-based tooling for the 
line-of-business teams — ensures that both developers and non-technical users can 
rapidly build integration without the need for code. 
Chapter 5. IBM Cloud Pak for Integration 155

http://www.redbooks.ibm.com/abstracts/redp5319.html?Open


� Knowledge workers and citizen integrators in lines of business can take advantage of the 
simpler, configuration-based designer tooling to connect applications in the cloud. 
Alternatively, they can innovate on-premises applications for themselves to automate 
information and process flows by using a no-code approach while they take advantage of 
the multi-tenant, Cloud Service runtime. 

� Integration specialists can choose to use the new web-based tooling to build simple things 
quickly, or use the full Integrated Development Environment (IDE) toolkit to tackle more 
detailed and challenging requirements.

Users of all experience benefit from accelerators, such as templates for common integration 
and industry-specific-use cases. 

5.5.2  No-code RESTful integration services 

Cloud Pak for Integration supports building integration flows through a no-code approach and 
exposes those flows as RESTful APIs without having to be an API development expert. 
These APIs can be seamlessly brought into the API Manager to handle the management, 
securing, and socializing to development teams. Whether building cloud scale, resilient 
applications from the ground up or taking the opportunity to use existing technologies as part 
of a serverless architecture, enterprises can rely on the rapid build and access to the systems 
at the right time.

5.5.3  Flexible integration patterns 

There is broad support in a single platform for API and event-driven technologies to 
complement integrations that support batch data movement, Electronic Data Interchange 
(EDI), and service-oriented architecture (SOA). This helps to ensure that existing investments 
in integration can be used where they are optimal, while they support the rapid build of new 
use cases. 

5.5.4  Broad deployment options 

Two form factors — software and a managed cloud service — provide an extensive range of 
deployment options that include on-premises, to private data centers, dedicated instances on 
public cloud, on Red Hat OpenShift, through to the public cloud providers, including of course 
our own IBM Cloud. It also includes a fully managed IBM Cloud service. The runtime 
continues to serve virtual machine and bare metal installation while also being significantly 
optimized for running in containers. 

5.5.5  Extended connectivity 

Connectivity options across cloud service applications, cloud platforms, and existing 
on-premises applications provide pre-packaged connectivity to a wide range of Cloud 
services, Software as a Service (SaaS) applications (100+), and cloud platforms. These 
options complement the robust existing set of connectors for packaged applications that 
include: 

� Customer relationship management (CRM)

� Enterprise resource planning (ERP) 

� Marketing and Human Capital Management (HCM)

� Files
156 Accelerating Modernization with Agile Integration



� Databases

� Messaging systems

� Mainframe applications1

5.5.6  Situational awareness with insightful and actionable notifications

This new capability empowers knowledge workers to easily consume data in enterprise 
systems and cloud services, and then proactively detects business situations of interest to 
remove information blind spots. Key to the ability for any enterprise to act immediately, 
non-technical users can quickly and easily build flows to detect events of interest and provide 
notifications that communicate the key pieces of information that are required for them to 
make an informed decision. Based on that insight, users can then quickly select the right, 
next-best-action that should be carried out. 

5.5.7  Quick utilization of artificial intelligence (AI) services 

The cloud-based tooling enables enrichment of data in flight and the implementation of digital 
agents by using pre-built connectors to IBM Watson’s cognitive services. AI capabilities can 
be trivially embedded into clients' integrations to perform sentiment analysis, translation, or to 
pull out key aspects of a document narrative by using rich cognitive and natural language 
services. It can also integrate directly with conversation services to quickly build out chat 
bots. 

5.5.8  Rapid visual orchestration of data and systems for API-driven 
architectures 

The strength of an API relies heavily on how well it is composed to bring existing sources of 
information together. The offering provides a range of relatable tooling experiences that 
support users of multiple types and skills sets to perform that composition, with everything 
from simple, graphical flow design right through to deep programmatical controls. Users, 
whether business-focused or technical, can create and expose innovative APIs from 
wherever data it is located. 

5.5.9  Lightweight integration runtime for cloud native deployment 

IBM Cloud Pak for Integration delivers revolutionary changes to the way that application 
integration assets are deployed to the integration runtime. This massively shortens and 
simplifies build pipelines and offers rapid deployment of new artifacts, fast start-up times and 
elastic scaling, and availability configurations. The result is to create a runtime that is more 
CPU and memory efficient, truly cloud-native and aligns with the principles of microservices. 
As such, large centralized ESB installations often containing 100s of integrations can be 
broken down into small granular sets of micro integrations each running in their own 
individually managed and scaled containers. 

Users who deploy the software can take advantage of these features: 

� Simple file-system-based, dependency-free installation, and deployment that is ideally 
suited to Docker images. 

1  For more information on the options connecting to mainframe, see the IBM Redpaper IBM Z Integration Guide for 
Hybrid Cloud and the API Economy, REDP5319 (http://www.redbooks.ibm.com/abstracts/redp5319.html?Open)
Chapter 5. IBM Cloud Pak for Integration 157

http://www.redbooks.ibm.com/abstracts/redp5319.html?Open


� Easy scaling and management by using orchestration frameworks such as Kubernetes, 
alongside other components within a modern architecture. 

� Ensures consistency of fixed integration server settings between environments, yet 
enables simple overriding of settings that should vary by environment.

� Truly, cloud-native components that are tailored for use in container technologies, such as 
Docker that run under a Kubernetes framework. 

5.5.10  Grown from a trusted market leading product 

IBM App Connect builds upon the robust and proven IIB runtime that is trusted by thousands 
of clients over the past 18 years or more to run their mission-critical, application integration 
projects. During this period, the offering continually grew to allow clients to embrace new 
technologies — such as Kafka and Loopback bridge across cloud and on-premises 
architectures with a hybrid runtime — and adopt open standards through the delivery of 
OpenAPI features. 

The connectivity and tooling options extend the wide variety of data formats and application 
that are supported and include standards-based formats, such as:

� eXtensible Markup Language (XML)

� Data Format Description Language (DFDL)

� JavaScript Object Notation (JSON)

� Industry formats and standards, such as: 

– Health Level 7 (HL7)

– The Society for Worldwide Interbank Financial Telecommunication (SWIFT)

– ISO8583

– Custom formats

An extensive range of operations (there are around 100 functions on the palate of the toolkit) 
can be performed on data, such as routing, filtering, and enrichment.

Wherever the applications are on-premises, on cloud, or both, these flexible integration 
capabilities can support the users' choice of solution architectures, which include: 

� Service-oriented
� RESTful
� Event-oriented
� Data-driven
� File-based (batch or real-time) 

The new capabilities that are delivered in IBM App Connect unify and extend the capabilities 
of the IIB family with those of IBM App Connect Professional in a single offering. These 
capabilities better serve the demands of clients who are integrating applications and data to 
compete in today's economy. IBM App Connect is the official successor to the IIB family of 
offerings. 

5.5.11  IBM App Connect on deployment options

This sections outlines the platforms on which IBM App Connect is available.

� Container-base installation: IBM App Connect's integration server (formally known as 
IBM Integration Bus) has been supported on containers since 2015. 
158 Accelerating Modernization with Agile Integration



– IBM Cloud Pak for Integration: The simplest way to deploy IBM App Connect's 
integration servers, is to use the facilities provided by IBM Cloud Pak for Integration. 
Through a consistent user interface shared with the other capabilities within the Cloud 
Pak, users can directly upload an integration definition (a "bar" file) for deployment. 
IBM Cloud Pak for Integration then takes care of how to build that into a container 
image, deploy it, and also manage and monitor it.

– Red Hat OpenShift and other container platforms: IBM App Connect's integration 
server is supported for use in any container platform that runs OCI (Open Container 
Initiative) based containers. Template container images, Dockerfiles, and Helm Charts 
are provided to simplify setup as documented in Chapter 7, “Field notes on 
modernization for application integration” on page 433.

� Operating system installation: IBM App Connect V 11 can be installed directly on the 
following operating systems:

– Windows

– Linux

– IBM AIX® – IBM App Connect 11.0.0.5 and later

� Managed service on IBM Cloud: IBM App Connect on IBM Cloud is a fully managed 
integration platform on IBM Cloud with a broad range of capabilities to connect different 
applications. It provides “enterprise - wide” connectivity options for deep integration 
needs.

Clients can use the IBM App Connect Toolkit to build integration assets that are packaged 
and deployed to an Integration Server.

The IBM App Connect Toolkit can be obtained by downloading the Developer Edition of 
IBM App Connect, which is included with the Cloud Service and allows development of 
integrations.

5.6  Enterprise Messaging: IBM MQ

As a key part of IBM Cloud Pak for Integration, IBM MQ is the gold standard for enterprise 
messaging. It makes life easier for developers by supporting multiple operating systems, 
hybrid cloud environments, agile development processes, and microservices architectures 
with an all-in-one messaging backbone. The technology has been proven across industry use 
cases for over 26 years and used by 85% of the Fortune 1002.

It enables applications and services to communicate reliably without calling each other 
directly, introduces process independence into the application architecture, and improves 
fault tolerance and reliability throughout the system. IBM's enterprise messaging enhances 
connectivity, simplifies resilience, and is perfectly suited for distributed and diverse 
computational architectures. Unlike most messaging solutions, IBM MQ can be used to 
ensure once-and-once-only delivery. Others offer at most once or at least only, introducing 
the potential for message loss or duplication.  

IBM has provided enterprise messaging in containers since 2015 and certifies container 
technologies such as Kubernetes and OpenShift to allow managed production grade 
deployments. Its lightweight nature makes it a natural fit for cloud native environments, 
allowing runtimes to start up in seconds. High availability is provided as standard, 
cloud-native features such as Uniform Clusters make scaling of environments easy. As clients 
expand from their traditional on-premises environments to a hybrid multicloud deployment, 

2  https://www.ibm.com/products/mq
Chapter 5. IBM Cloud Pak for Integration 159

https://www.ibm.com/products/mq


IBM MQ environments are expanded to provide the mission-critical communication across 
this hybrid multicloud environment.

Figure 5-3   IBM MQ Multi-Cloud for mission-critical communication

Messaging is traditionally administered by dedicated teams within IT. “As-a-service” delivery 
lets enterprises create self-service portals that enable line of business (LOB) or individual 
users to request changes to the messaging infrastructure independently. For example, they 
can create or delete queues or provision new resources for applications.

Implementing MQ as a service can enable enterprises to increase agility and efficiency, since 
resource provisioning can be accomplished faster and more dynamically. It can also improve 
usability and internal consistency. Messaging middleware naturally works well within 
serverless or microservices architectures common in cloud-native development. It’s also 
being offered in a cloud-hosted service model. In this model, your MQ handles all the 
provisioning, installation, and maintenance of your messaging infrastructure, and is hosted in 
the cloud (for example IBM and AWS clouds).

To discover more about mastering IBM MQ, go to the Learn MQ site here: 
https://developer.ibm.com/messaging/learn-mq/ 

5.7  Event Streaming: IBM Event Streams

IBM Cloud Pak for Integration includes Apache Kafka as the event streaming capability. IBM 
builds on the open source technology and enhances the ease of use to be truly ready for 
enterprise deployments. This is provided on public and private cloud environments to meet 
the needs of clients. IBM was the first supplier of a managed Apache Kafka offering in 2015 
on the IBM Cloud. IBM Event Streams on IBM Cloud provides both multi-tenant and single 
tenant options, and this experience of running a managed service has been rolled into our 
on-premises private cloud offering. This capability is also sold separately as IBM Event 
Streams. In either model, it can run on-premise as a fully containerized offering, allowing the 
deployment to benefit from cloud-native best practices such as easy installation, 
management, and scaling of the solution. Out-of-the-box high-availability is pre-configured, 
so you can replicate streams across the globe for disaster recovery, thereby satisfying the 
requirements for mission-critical use.
160 Accelerating Modernization with Agile Integration

https://developer.ibm.com/messaging/learn-mq/


Apache Kafka scales to handle millions of messages a second, suitable for any organizations 
needs. However, deploying a production environment can be daunting with the configuration 
of Kafka brokers, zoo keepers, administration agents, and so forth. IBM Event Streams has 
been purpose built for simplicity, with the initial production setup only a few clicks to complete. 
As with all supported IBM products, IBM Event Streams also provides IBM 24x7 support to 
provide the safety net organizations need.

To learn more about getting started with IBM Event Streams, go to Getting Started Guide on 
IBM Cloud Docs at https://cloud.ibm.com/docs/services/EventStreams/index.html. 

5.8  High-Speed File Transfer: IBM Aspera

The high-speed file transfer capability delivers time-critical transport of very large files and 
data sets — such as high-definition broadcast videos and high-quality advertising footage — 
to many global endpoints. It offers highly scalable server software that supports thousands of 
concurrent transfer sessions and multiple client options for initiating high-speed transfers 
including the web browser plug-in, desktop and point-to-point clients and command line. This 
capability is also sold separately as IBM Aspera.

This file transfer software enables centralized control over network-wide transfers, nodes, 
and users with complete visibility into the high-speed transfer environment. It provides a 
dashboard overview of all activity and multilevel views of the performance of individual 
transfers and node activity. In addition, it lets users create automated one-time or recurring 
transfers including multipoint smart transfers that can later be copied, modified, and reused.

With direct-to-cloud technology and built-in clustering, Aspera can provide faster performance 
and automatically scale transfer capacity. Enterprise-grade security includes a powerful 
access control model, encryption in transit and at rest, and data-integrity verification.

Key features include:

� High-speed access to data in a hybrid cloud: View and transfer files across almost any 
cloud or on-premises storage system with a single interface.

� Fast, reliable and secure file sharing and exchange: Drag and drop large files and 
folders to send or share data with any authorized individual or group of users.

� Package delivery to anyone around the world: Deliver packages of files to recipients 
anywhere. Include external users in package delivery and content-submission requests.

� Data migration to, from and between clouds: Migrate massive volumes of unstructured 
data at high speed across all market-leading cloud platforms.

� High-speed transfer-enabled applications: Use published APIs to extend existing web 
and mobile applications to include fast file transfer.

� Customized reports and auditing: Gives users and administrators control over individual 
transfer rates and bandwidth sharing, and full visibility into bandwidth utilization. It 
maintains comprehensive logging for customized reports and auditing and allows 
administrators to monitor and control bandwidth utilization. The adaptive rate-control 
feature enables fast, automatic discovery of bandwidth capacity and its full utilization, 
while remaining fair to other traffic.

5.8.1  Fast, Adaptive and Secure Protocol (FASP) technology

Built on the patented IBM Aspera FASP® technology, Aspera can move data up to hundreds 
of times faster than FTP and HTTP, regardless of file size, transfer distance, or network 
Chapter 5. IBM Cloud Pak for Integration 161

https://cloud.ibm.com/docs/services/EventStreams/index.html


conditions. It allows you to fully utilize your available bandwidth, without impacting other traffic 
on the network.

This file transfer software offers a breakthrough transfer protocol that leverages an existing 
WAN infrastructure and commodity hardware. It achieves speeds up to hundreds of times 
faster than FTP and HTTP and eliminates the fundamental bottleneck of conventional file 
transfer technologies.

A detailed description of the IBM Aspera FASP technology can be found at the following link:

https://www.ibm.com/downloads/cas/7D3KBL9Z

5.8.2  Aspera on Cloud

Aspera on Cloud is IBM Aspera's on-demand SaaS offering for global content transfer and 
exchange. 

Using Aspera on Cloud, organizations can store and readily access files and folders in 
multiple cloud-based and on-premises storage systems. Sharing among users is as easy as 
browsing or dragging-and-dropping, regardless of where the files are located, freeing 
collaboration from traditional boundaries among colleagues in both local and remote 
locations.

Aspera on Cloud also uses IBM Aspera's FASP protocol, which overcomes the limitations of 
other file-transfer technologies. By moving large data sets at maximum speed, reliably and 
securely — regardless of network conditions, physical distance between sites, and file size, 
type, or number — Aspera on Cloud enables a new world of collaboration, sharing, and 
content delivery.

Aspera on Cloud highlights include the following:

� Domain security within the application

� Intuitive file management tools

� Multiple permission or access levels for individual files and folders, configurable per user 
or group

� Ability to send content to multiple recipients by using an intuitive, email-like interface

� Simple sharing of files and folders

� Configurable permissions to share with and send to outside users who do not have an 
Aspera on Cloud account

� Comprehensive administrative console

� Support for IBM Aspera Transfer Service, enabling automated self-scaling of transfer 
capacity to maximize performance while minimizing cost

� RESTful Platform API (including users, permissions, transfers, and reporting)

Intuitive file sharing and delivery
Move files across on-premises and multicloud environments with an easy-to-use interface 
that simplifies file uploads, downloads, sharing, and distribution. Easily drag and drop files 
and folders to transfer to any storage location. Assemble files into a digital package, and use 
an email-like interface to send to one or more recipients. Organize your files and users into 
secure collaboration workspaces. Enable users to submit data to a shared 
content-submission portal. See Figure 5-4 on page 163.
162 Accelerating Modernization with Agile Integration

https://www.ibm.com/downloads/cas/7D3KBL9Z


Figure 5-4   Intuitive file sharing and delivery

Central administration of hybrid environments
Connect to all your cloud and on-premises storage and remotely manage your transfer nodes 
with a single easy-to-use interface. Store and readily access files and folders in multiple 
cloud-based and on-premises storage systems. Configure access to transfer nodes that are 
located in your data center or on any of the following market-leading cloud platforms: IBM 
Cloud, Amazon Web Services (AWS), Azure and Google. Establish network policies that 
govern how transfer nodes interact with each other. See Figure 5-5.

Figure 5-5   Central administration of hybrid environments

Real-time visibility and control of transfers
Monitor transfer activities in real time, while embedding your brand into every communication 
and web asset. Manage transfer activities, storage usage and digital packages in real time. 
Monitor activity logs and service alerts. Manage membership in workspaces, user groups and 
Chapter 5. IBM Cloud Pak for Integration 163



shared inboxes. Easily create a uniquely branded web presence by customizing email 
templates and logos to match your brand identity. See Figure 5-6.

Figure 5-6   Real-time visibility and control of transfers

5.9  Service Mesh: Istio 

The IBM Cloud Pak for Integration and Red Hat OpenShift Container Platform provide a 
Service Mesh based on Istio. At a high level, service mesh can appear to have some overlap 
points with other integration components. So, we have chosen to briefly describe it here for 
clarity. See also 4.8, “Service mesh” on page 119, where we discuss its role conceptually and 
especially in relation to API Management.

Istio (https://istio.io) is one of the most popular technology implementations for a service 
mesh. Istio is a Kubernetes-compatible open platform for providing a uniform way to integrate 
microservices, manage traffic flow across microservices, enforce policies and aggregate 
telemetry data. 

From a high-level functionality perspective, Istio allows you to connect, secure, control, and 
observe your containers as they run on Kubernetes. 

In this section, we go specifically into detail on the Istio service mesh. For more information 
on the broader architectural role of the Service Mesh, and specifically it is comparative 
relationship to API management, see 4.8, “Service mesh” on page 119. 

Connect
Istio provides traffic management for services. The traffic management function includes:

� Intelligent routing: The ability to perform traffic splitting and traffic steering over multiple 
versions of the service
164 Accelerating Modernization with Agile Integration

https://istio.io


� Resiliency: The capability to increase micro services application performance and fault 
tolerance by performing resiliency tests, error and fault isolation and failed service 
ejection.

Secure 
Istio implements a Role-based Access Control (RBAC) which allow a specific determination 
on which service can connect to which other services. Istio uses Secure Production Identity 
Framework for Everyone (SPIFFE) to identify the ServiceAccount of a micro service uniquely 
and use that to make sure that communications are allowed.

Control
Istio provides a set of policies that allows control to be enforced based on data collected.

Observe
While enforcing policies, Istio allows observing your microservices through integrated 
telemetry, monitoring, tracing, and logging.

An Istio service mesh is logically split into a data plane and a control plane.

� The data plane is composed of a set of intelligent proxies (Envoy) deployed as sidecars. 
These proxies mediate and control all network communication between microservices 
along with Mixer, a general-purpose policy and telemetry hub.

� The control plane manages and configures the proxies to route traffic. Additionally, the 
control plane configures Mixers to enforce policies and collect telemetry.

Figure 5-7 on page 166 shows the Istio service mesh architecture.
Chapter 5. IBM Cloud Pak for Integration 165



Figure 5-7   Istio service mesh architecture

The Istio control and data plane are made up by the following components:

Envoy: sidecar proxies per microservice to handle ingress/egress traffic between services in 
the cluster and from a service to external services. The proxies form a secure microservice 
mesh providing a set of functions like discovery, layer-7 routing, circuit breakers, policy 
enforcement and telemetry recording/reporting functions.

Mixer: central component that is leveraged by the proxies and microservices to enforce 
policies such as authorization, rate limits, quotas, authentication, request tracing and 
telemetry collection.

Pilot: a component responsible for configuring the proxies at run time.

Citadel: a centralized component responsible for certificate issuance and rotation. Citadel 
also deploys node agents responsible for certificate issuance and rotation.

Galley: central component for validating, ingesting, aggregating, transforming, and 
distributing config within Istio.

In the remainder of this section, a more detailed description the Istio components is provided, 
(based on the community definition available here: 
166 Accelerating Modernization with Agile Integration



(https://istio.io/docs/concepts/what-is-istio/). That way, the reader can understand 
how each component contributes to Istio’s ability to connect, secure, control, and observe 
microservices.

Envoy
Istio uses an extended version of the Envoy proxy. Envoy is a high-performance proxy that is 
developed in C++ to mediate all inbound and outbound traffic for all services in the service 
mesh. Istio leverages Envoy’s many built-in features, for example:

� Dynamic service discovery
� Load balancing
� TLS termination
� HTTP/2 and gRPC proxies
� Circuit breakers
� Health checks
� Staged rollouts with percentage-based traffic split
� Fault injection
� Rich metrics

Envoy is deployed as a sidecar container alongside your application container. It is deployed 
in the same Kubernetes pod such that it is always present and shares the same lifecycle. This 
deployment allows Istio to extract a wealth of signals about traffic behavior as attributes. Istio 
can, in turn, use these attributes in Mixer to enforce policy decisions, and send them to 
monitoring systems to provide information about the behavior of the entire mesh.

The sidecar proxy model also allows the addition of Istio capabilities to an existing 
deployment with no need to rearchitect or rewrite code.

Mixer
Mixer enforces access control and usage policies across the service mesh, and collects 
telemetry data from the Envoy proxy and other services. The proxy extracts request level 
attributes, and sends them to Mixer for evaluation.

Mixer includes a flexible plug-in model. This model enables Istio to interface with a variety of 
host environments and infrastructure backends. Thus, Istio abstracts the Envoy proxy and 
Istio-managed services from these details.

Pilot
Pilot provides service discovery for the Envoy sidecars, traffic management capabilities for 
intelligent routing (like A/B tests, canary rollouts), and resiliency (timeouts, retries, circuit 
breakers).

Pilot converts high level routing rules that control traffic behavior into Envoy-specific 
configurations, and propagates them to the sidecars at run time. Pilot abstracts 
platform-specific service discovery mechanisms and synthesizes them into a standard format 
that any sidecar can use, as long as that sidecar conforms with the Envoy data plane APIs. 

Citadel
Citadel provides strong service-to-service and end-user authentication with built-in identity 
and credential management. Citadel can be used to upgrade unencrypted traffic in the 
service mesh. Using Citadel, operators can enforce policies based on service identity rather 
than on network controls. Istio’s authorization feature also allows you to control who can 
access services within the mesh.
Chapter 5. IBM Cloud Pak for Integration 167

https://istio.io/docs/concepts/what-is-istio/


Galley
Galley validates user-authored Istio API configuration on behalf of the other Istio control plane 
components. Over time, Galley will take over responsibility as the top-level configuration 
ingestion, processing, and distribution component of Istio. It will be responsible for insulating 
the rest of the Istio components from the details of obtaining user configuration from the 
underlying platform (for example Kubernetes).
168 Accelerating Modernization with Agile Integration



Chapter 6. Practical agile integration

In this chapter we progressively build up a scenario that demonstrates use of the integration 
capabilities to solve some common modern application design challenges using agile 
integration techniques.

We begin by exposing data from a traditional data source over RESTful APIs. Then, we 
gradually build up to more sophisticated ways of making that same data, and data from other 
applications, available via modern microservice-style components.

We have arranged each section to be completely independent of the others, so there is no 
need to work through the sections in order. Each section is self-sufficient, and provides 
everything needed to build it out. 

This chapter has the following sections. See 6.1, “Introduction” on page 170 for a detailed 
description of each section:

� Introduction
� Application Integration to front a datastore with a basic API
� Expose an API using API Management
� Messaging for reliable asynchronous data update commands
� Consolidate the new IBM MQ based command pattern into the API
� Advanced API security
� Create event stream from messaging
� Perform event-driven SaaS integration
� Implementing a simple hybrid API
� Implement event sourced APIs
� REST and GraphQL based APIs
� API testing
� Large file movement using the claim check pattern

6

Note: The solution in each section is complete for a specific scenario. However, none of 
these solutions forms a global, end-to-end solution for agile integration.
© Copyright IBM Corp. 2020. All rights reserved. 169



6.1  Introduction

The scenarios for this chapter are based on a common theme we see with customers. We 
often begin with a requirement from the business to provide access to a back-end system by 
fronting it with an API. However, this apparently simple requirement grows in complexity over 
time, typically to cater to increasingly challenging non-functional requirements such as 
performance and availability. 

Our scenario begins with the basic requirement to make the data from a table in a traditional 
database available as an API. In our scenario this is a simple single table that holds 
information about "Products." But in a real scenario it could be multiple tables that are joined 
in various ways to provide product catalog information.We achieve this integration in its most 
basic form in section 6.2, “Application Integration to front a data store with a basic API” on 
page 173. Deliberately, we do this using the fine-grained cloud native style deployment that is 
fundamental to agile integration as discussed earlier in this book. This ensures that 
integrations are isolated from on another so they can be changed and scaled independently. 
This improves agility, resilience, and optimization of the underlying resources. 

As shown in Figure 6-1, we then look at improving the exposure of the API, using API 
management to make the API more discoverable, enable consumers to self-subscribe to use 
APIs, and enable us to track and control usage of the APIs. This is the topic of 6.3, “Expose 
an API using API Management” on page 190. 

Figure 6-1   Improving the exposure of the API using API management

As a result, we now have a self-contained business component that provides API-based 
access to product data, that can easily be reused to bring that data into new solutions. 

Next comes the non-functional requirements. Although our integrations have been designed 
in a cloud native way such that they can scale, and indeed scale independently, the back-end 
database is still a bottleneck. There are times when the number of updates being made to the 
Product table is affecting the performance of the reads on that table. Indeed, the writes 
themselves start to take more time. The effect on the user experience of applications based 
on this API is becoming noticeable, reducing customer satisfaction. With our single-table 
scenario, clearly these performance issues would be unlikely to occur. But we can imagine a 
real multi-table scenario — with searches performing multi table joins, and updates locking 

Logical component boundary

Create
Update
Delete

Search
&

Read

API Management

Consolidated 
API

PRODUCTS
Datastore

API Management 
(IBM API Connect)

Application Integration
(IBM App Connect)

Datastore
(IBM DB2)
170 Accelerating Modernization with Agile Integration



multiple tables in order to perform transactional updates with integrity — where performance 
issues of this type soon become an issue. We decide to tackle this problem on two fronts.

� Change the interaction pattern for updates to be asynchronous: 

We change the way updates are performed such that they are done asynchronously after 
the requests has been acknowledged. Consumers of the API then get an immediate 
response to assure them that the updates will occur, enabling a much more responsive 
user interface. Furthermore, it means we can now throttle the rate at which we apply those 
updates to the database such that they have less effect on the performance of reads. We 
enable this in 6.4, “Messaging for reliable asynchronous data update commands” on 
page 209. We provide a route to performing updates asynchronously in a "fire-and-forget" 
pattern by placing them in a "command store" (in our case, IBM MQ), then responding 
immediately back to the caller with an acknowledgment. We then make this accessible to 
a broader audience in 6.5, “Consolidate the new IBM MQ based command pattern into the 
API” on page 259 by bringing the asynchronous update back into the HTTP based API. 
Effectively we hide the use of IBM MQ behind the scenes. It should be noted that we have 
now introduced eventual consistency (rather than immediate consistency). Updates don't 
occur at the time of the update request. The applications using the API need to take this 
into account in their design, but as a result they can enjoy the performance improvements. 

� Provide a read-optimized datastore:

Now that Product data is so easily available through our API, it is being used in many new 
and innovative ways. Unfortunately, the way that the data is stored in the current database 
is poorly suited to the types of queries now being performed. These new queries perform 
slowly even with our move to asynchronous updates as the issues are more related to 
how data is aggregated. This may simply be because the new consumers want a very 
different representation of the Product data. Or it could be because it needs to be 
combined with other data such as Price before it is useful. To solve this, we decide to 
implement a new datastore, that is specifically optimized for these new queries. We of 
course need to keep this new datastore in sync with the original master Product database. 
To do this, in 6.7, “Create event stream from messaging” on page 322 we show how we 
can keep a note of all the changes that happen to the Product database and place them in 
an event store, which in our case is provided by IBM Event Streams. These updates can 
then be asynchronously applied to the read-optimized datastore as discussed in 6.10, 
“Implement event sourced APIs” on page 367. Note this further exacerbates the eventual 
consistency between the updates to the main database, and reads from the 
read-optimized datastore. However, since users of our API have already had to learn to 
code for this behavior when we separated out the commands, it should have minimal 
effect on their applications. 

Figure 6-2 on page 172 shows the enhanced integration pattern with asynchronous updates 
and optimized reads.
Chapter 6. Practical agile integration 171



Figure 6-2   Performance and availability improvements through eventual consistency patterns 

From an integration standpoint, the patterns we've introduced are many decades old. Yet, 
modern application developers might see this set of patterns implemented together and 
recognize that it is an implementation of CQRS. CQRS stands for Command Query 
Responsibility Segregation. It essentially means providing independent paths for commands 
(create, update, delete) and queries (reads, searches, and so on), just as we have done in 
our scenario. Because this concept is familiar to many developers, we have tried to use the 
associated terms in our scenario where appropriate.

From the outside, our logical Product component looks much the same as it did in our first 
iteration, enabling access to Product data via an API. However, using agile integration 
techniques: 

� The API is now more easily discovered, used, and controlled.

� The implementation is more performant and scalable. 

� The patterns give us flexibility to rapidly implement new requirements without destabilizing 
what we have. 

So, we have had a detailed look at how integration capabilities can be involved in the 
implementation of a reusable business component, from a simple API exposure through to a 
full CQRS-based implementation. Next, we look at how these business components might 
interact with one another. 

In 6.9, “Implementing a simple hybrid API” on page 345, we look at our new API from the 
consumers point of view. We consider how much easier exposing something as an API 
makes the creation of new solutions. In this case we enable a non-integration specialist to 
build a new API based on existing APIs in order to create a further unique capability. 

Logical component boundary

Search
&

Read

Event 
Store

Read-
optimized 
Datastore

Event 
Processing

Command 
Store

Create
Update
Delete

API Management

Consolidated 
API

PRODUCTS
Datastore

API Management 
(IBM API Connect)

Events/Messaging 
(IBM Event Streams/IBM MQ)

Application Integration
(IBM App Connect)

Datastore
(IBM DB2)
172 Accelerating Modernization with Agile Integration



Going back to the events that we were using internally within the component, let’s consider 
how they might also be valuable outside the component. The events might become a 
reusable capability in the same way that our API is. Exposing events beyond the component 
would enable, for example, a separate application to use the same event-sourced 
programming models in their own implementations, maintaining their own read-optimized 
data stores. In 6.8, “Perform event-driven SaaS integration ” on page 328, we extend this 
thought. We consider an example of how non-integration specialists could use events from 
our component as triggers on new integrations with modern Software-as-a-Service 
applications. 

We then return to our exposed API and consider how we might want to improve that exposure 
as we make it available to broader audiences. We explore these issues: 

� How to implement the OAuth security model to enable authentication to be handled by a 
separate provider ([6.6, “Advanced API security” on page 276). 

� How to introduce alternative API exposure styles such as GraphQL to give consumers 
more flexibility in how they consume the data (6.11, “REST and GraphQL based APIs” on 
page 381). 

� How to perform effective, repeatable API testing to ensure that the API behavior remains 
consistent as we add enhancements (6.12, “API testing” on page 398). 

Finally, we consider what to do when the data we need to move between applications is not 
appropriate for APIs or events. A common example in modern applications is files such as 
video media. It makes no sense for these large files to travel over an API, or events due to 
their size, often greater than a Gigabyte. In these circumstances a more logical approach is 
the claim check pattern explored in 6.13, “Large file movement using the claim check pattern” 
on page 410. In that example, we store the object in a place that the cloud can reference, 
then pass only the reference. Of course, the file's content must move to its destination 
eventually. So, we also discuss the benefits of FASP (the Fast and Secure Protocol) for 
getting large data across significant network distances. 

6.2  Application Integration to front a data store with a basic API

Note: For some of the following exercises, we use IBM Cloud Pak for Integration. If you do 
not currently have access to an environment, see section 5.1.4, “Getting access to IBM 
Cloud Pak for Integration for the exercises” on page 145.

Important: Since the writing of this IBM Redbooks publication, the IBM Cloud Pak for 
Integration has embraced Kubernetes Operators (https://coreos.com/operators/). This 
significantly simplifies how components such as an Integration Server are installed and 
maintained, extending the features provided by Helm. There is more information and an 
excellent video demonstrating this new capability here:

https://developer.ibm.com/integration/blog/2020/06/28/ibm-app-connect-operator-
1-0-is-now-available/

It does unfortunately mean that some of the instructions describing the deployment of App 
Connect Enterprise in containers within this section are now out of date, and will need to 
be adapted to the use of operators. We may well look to update the book, but in the mean 
time, refer to the product documentation to find information on the new features.
Chapter 6. Practical agile integration 173

https://coreos.com/operators/
https://developer.ibm.com/integration/blog/2020/06/28/ibm-app-connect-operator-1-0-is-now-available/


In this section, we demonstrate how to use IBM App Connect to expose a datastore as a 
RESTful API. The key points implemented here are as follows:

� Fine grained, container-based deployment of integrations, enabling independent 
maintenance, elastic scaling, and isolated resilience. 

� Code free data mapping from a REST data model to database table definition.

� Configuration-based protocol conversion from HTTP to JDBC.

The objective here is not to show in detail how to create the integrations themselves since 
there is plenty of existing material on building integrations. The key thing to note is that no 
code is required for these simple integrations, just a simple integration flow that contains a 
map.

Instead, we want to focus on what it looks like to deploy these to a cloud native style. As such, 
we begin the exercise with a blank cloud environment, and we deploy the integrations directly 
to it. There is no preparatory stage of building a shared infrastructure as we would have 
traditionally. Instead, each integration that is deployed provides its own discrete integration 
runtime, and the rest (such as HA and scaling) is provided by the container orchestration 
platform.

Figure 6-3   Deployment of the API across two separate containers

We deliberately demonstrate deployment of this API across two separate containers as 
shown in Figure 6-3. That way, you see that they could be changed and scaled separately and 
could have different resilience models.

We create two REST applications in the IBM App Connect Toolkit. One is for Create, Update, 
and Delete (commands) to a table on IBM Db2 called Products. The other deals exclusively 
with Read (queries). The flows for the two REST applications are already built and available 
at this GitHub site:
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Inte
gration/tree/master/chapter6/6.1 

The applications can be opened in the Toolkit by importing the following files:

� https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Int
egration/blob/master/chapter6/6.1/database_operations_PI.zip 

Logical component boundary

Create
Update
Delete
(AC-IS)

Search
&

Read
(AC-IS)

ODBC

JSON/HTTP

PRODUCTS
datastore

(DB2)

IBM App Connect
(Integration Server runtime)(AC-IS)

(DB2)
IBM DB2 database
174 Accelerating Modernization with Agile Integration

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_operations_PI.zip
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_operations_PI.zip
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/tree/master/chapter6/6.1
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/tree/master/chapter6/6.1
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_operations_PI.zip
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_operations_PI.zip


� https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Int
egration/blob/master/chapter6/6.1/database_query_PI.zip 

Alternatively, you can build them yourself as described here:

https://www.ibm.com/support/knowledgecenter/en/SSTTDS_11.0.0/com.ibm.gdm.doc/cm288
51_.htm

Each REST application includes:

� JDBC Connection to a Db2 database that uses a policy

� A Db2 database called PRODUCTS, with a schema called PRDCTS and a table called 
Products as defined in the Products data model in 
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-I
ntegration/blob/master/chapter6/products_data_model.json

� Swagger that describes the data model for each path

� Unique sub flows for each relevant operation (Create, Read, Update, Delete)

Each subflow has an input, a mapping node and an output. Figure 6-4 shows the REST API 
operation subflow.

Figure 6-4   REST API Operation Subflow

Figure 6-5 shows the Queries flow. 

Figure 6-5   Get Product Operation Mapping Node

Figure 6-6 on page 176 through Figure 6-8 on page 177 show the Command flows.
Chapter 6. Practical agile integration 175

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_operations_PI.zip
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_operations_PI.zip


Figure 6-6   Delete Product Operation Mapping Node

Figure 6-7   Post Product Operation Mapping Node
176 Accelerating Modernization with Agile Integration



Figure 6-8   Put Product Operation Mapping Node

6.2.1  Db2 setup

For the application in this section to function correctly, a Db2 database needs to be set up for 
the IBM App Connect flow to operate against. 

Next we must create a Db2 instance using the following instructions: 
https://github.com/IBM/Db2/tree/develop/deployment

1. Configure the instance with the following parameters:

a. Choose a release name.

b. Select a namespace. 
Note: This value does not need to be the same namespace where the IBM App 
Connect container will be deployed.

c. Set the Database Name to PRODUCTS.

d. Set the Db2 instance name to db2inst1.

e. Provide a Password for Db2 instance, for example passw0rd.

f. Persistence is optional.

g. Do not select the Db2 HADR mode.

2. After the deployment is complete, observe that ports 50000 and 55000 are both exposed 
via two types of Kubernetes services, NodePort and ClusterIP in the OpenShift console, 

3. You can use Db2-compatible database client to connect to the Db2 instance via the 
NodePort service, and to verify that the database called PRODUCTS has been 
successfully created. In the next section, we use the IBM App Connect Toolkit in the 
Database Development view.

Note: For a distinction between NodePort and ClusterIP service types, refer to section 
4.4.2, “Container orchestration” on page 107.
Chapter 6. Practical agile integration 177

https://github.com/IBM/Db2/tree/develop/deployment


In the remainder of the chapter, we connect to the Db2 instance by using a policy definition in 
IBM App Connect. The definition leverages the ClusterIP service, as described in 6.4.6, 
“Policy definitions” on page 250.

6.2.2  Db2 table setup

To set up a Db2 table for the samples in this chapter, we use the IBM App Connect Toolkit in 
the Database Development view to connect to the Db2 instance that we spun up in 6.2.1, 
“Db2 setup” on page 177.

The following tasks are performed on the IBM App Connect Toolkit version 11.0.0.5.

1. Open the toolkit and navigate to the Database Development View. See Figure 6-9 on 
page 178.

Figure 6-9   Switch to Database Development View

2. In the Data Source Explorer, right-click Database Connections, and select New. See 
Figure 6-10.
178 Accelerating Modernization with Agile Integration



Figure 6-10   New Database Connection

3. In the connection details, select the DB2 for Linux, UNIX, and Windows option in the 
menu and put the database details from the previous section. Remember to use the 
NodePort service exposing the container port 50000 for the Db2 instance.

The service is typically exposed on the Proxy Node IP address of Fully Qualified Domain 
Name. See Figure 6-11 on page 180.
Chapter 6. Practical agile integration 179



Figure 6-11   Connection details

4. The Products database connection now exists in the Database Connections sidebar. Right 
click Products and select New SQL Script. See Figure 6-12 on page 181.
180 Accelerating Modernization with Agile Integration



Figure 6-12   New SQL Script

5. To create a PRODUCTS table in the PRODUCTS database, type the following SQL 
command shown in Example 6-1 into the newly opened SQL script.

Example 6-1   SQL script

CREATE TABLE PRODUCTS
(
last_updated varchar(255) NOT NULL,
part_number int NOT NULL,
product_name varchar(255),
quantity int,
description varchar(255),
PRIMARY KEY (part_number)
);

6. Right click inside the SQL script and select Run SQL. See Figure 6-13 on page 182.
Chapter 6. Practical agile integration 181



Figure 6-13   Run SQL

This should result in a success report as shown in Figure 6-14 on page 183.
182 Accelerating Modernization with Agile Integration



Figure 6-14   - SQL success report

7. You can now insert a new row into the table using the following SQL command and again 
selecting the Run SQL command as previous.

INSERT INTO PRODUCTS ( last_updated, part_number, product_name, quantity, 
description)
VALUES ('2019-08-01T09:57:34.265Z', 12, 'duck', 100, 'a waterbird with a broad 
blunt bill, short legs, webbed feet, and a waddling gait');

8. We can check that the entry has been successfully inserted by using the SELECT SQL 
command.

SELECT * FROM PRODUCTS

Figure 6-15 shows the SELECT SQL query result.

Figure 6-15   SELECT SQL query result

6.2.3  Swagger definitions

In this section, we package the project files into a BAR file for each application as shown in 
the following web pages:

� https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Int
egration/blob/master/chapter6/6.1/database_operations.bar

� https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Int
egration/blob/master/chapter6/6.1/database_query.bar

Then we create a new server for each. In this chapter we want to use the user interface to 
achieve this. Later, we see how this can be automated by using pipeline deployment in 
section 7.5, “Continuous Integration and Continuous Delivery Pipeline using IBM App 
Connect V11 architecture” on page 465. 

1. Log in to the IBM Cloud Pak for Integration instance and the IBM App Connect dashboard. 
In this view we click Add server as shown in Figure 6-16.
Chapter 6. Practical agile integration 183

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_query.bar
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_query.bar
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_operations.bar
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_operations.bar
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_operations.bar
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_operations.bar
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_query.bar
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/6.1/database_query.bar


Figure 6-16   Add server in the IBM App Connect dashboard

2. We now select the BAR file that we want to import, select Add a BAR file. See 
Figure 6-17.

Figure 6-17   Add a BAR file

3. Next, select the BAR file from the local directory where it is saved and select Choose. See 
Figure 6-18 on page 185.
184 Accelerating Modernization with Agile Integration



Figure 6-18   Choose the relevant BAR file 

4. The BAR file is displayed in the user interface, and you can confirm that the correct file 
has been uploaded, then select Continue. See Figure 6-19.

Figure 6-19   BAR file shown in the user interface 

5. In the next screen we copy the Content URL and select Configure release. See 
Figure 6-20 on page 186.
Chapter 6. Practical agile integration 185



Figure 6-20   Get Content URL (ConfigureReleaseCopyContentURL)

6. The new page describes the helm chart to be used to deploy the new server into, confirm 
the Cloud Pak version and select Configure. See Figure 6-21 on page 186.

Figure 6-21   IBM App Connect Helm Chart 

7. Type a Helm release name such as redbook-read for the database query BAR and 
redbook-commands for the database commands BAR. In the Target namespace select 
186 Accelerating Modernization with Agile Integration



icp4i before you read and accept the license agreement by checking, I have read and 
agreed to the license agreement. See Figure 6-22 on page 187.

Figure 6-22   Helm release name, target namespace and accepted license agreement

8. Paste the previously copied Content URL into the Content Server URL box. See 
Figure 6-23 on page 187.

Figure 6-23   Pasted Content URL 

9. Type the IP address for the Master or Proxy node of the IBM Cloud Pak for Integration 
instance into NodePort IP box. See Figure 6-24 on page 187.

Figure 6-24   Deployment IP 

10.For this example we need only a single replica. So, set the Replica count to ‘1’ and 
ensure that the Local default Queue Manager is deselected as shown in Figure 6-25 on 
page 188.
Chapter 6. Practical agile integration 187



Figure 6-25   Replica Count 1 and Queue Manager deselected 

11.After double checking the configuration, select Install. 

12.A message confirming the starting of the installation is displayed. The message can be 
tracked in the helm release by redirecting through the View Helm Release button. See 
Figure 6-26 on page 188.

Figure 6-26   Helm Deployment successful start 

13.The new services for the helm release is displayed. To see further details, including the 
exposed ports for the server, select the link redbook-read-ibm-ace-server-icip-prod or 
redbook-commands-ibm-ace-server-icip-prod depending on the BAR file that is being 
deployed. See Figure 6-27 on page 188.

Figure 6-27   Two services for the deployed IBM App Connect server 

14.In Figure 6-28 on page 189 we can see the HTTP server exposed port (31016).
188 Accelerating Modernization with Agile Integration



Figure 6-28   Exposed ports for the service 

15.We can then use the port to create a test url to make a GET on the redbook-read server. In 
an API Connect Test and Monitor select a GET operation 
http://<ibm_cloud_ip>:<http_port>/database_query/v1/products which returns the 
records from the PRODUCTS table in the database. See Figure 6-29 on page 189.

Figure 6-29   Returned output from the PRODUCTS table 

It is worth considering that the policy used in both BAR files is dependent on its reference to 
the datastore. This must be updated if the port of the database changes. It is possible to 
Chapter 6. Practical agile integration 189



deploy the BAR directly to an existing empty server through the Toolkit and as the system 
gains maturity automated builds based on code repository pushes can be deployed.

We now have two BAR files deployed onto the Cloud that enable us to 
read/add/delete/update rows in the database. These bar files can be independently 
maintained and scaled, and can have separately defined availability models. 

6.3  Expose an API using API Management

This section shows you how to expose an API using API Management, which brings the 
following benefits. (Not all of these issues are explored in detail in the example.) 

� Discovery: Enable consumers to find the APIs they need, understand their specifications, 
learn how to use them, and experiment with them before committing to use them.

� Self-subscription: Allow consumers to self-subscribe to use the API using a revocable 
key. 

� Routing: Hide the exact location of the API implementation, and enable version based 
routing.

� Traffic management: Provide throttling of inbound requests to the API on a per-consumer 
basis

� Analytics: Provide both consumers and providers with information regarding their API 
usage, response times and more.

In the first exercise we created the two basic implementations of the REST APIs. We now 
want to bring those together into a single consolidated API to simplify usage for the 
consumer. Furthermore, we want to provide API management capabilities as shown in 
Figure 6-30. 

Figure 6-30   Providing API management capabilities 

Logical component boundary

Create
Update
Delete
(AC-IS)

Search
&

Read
(AC-IS)

ODBC

JSON/HTTP

API Management (APIC)

Consolidated
API

PRODUCTS
datastore

(DB2)

JSON/HTTP

IBM App Connect
(Integration Server runtime)(AC-IS)

(DB2) IBM DB2 database

(APIC) IBM API Connect
190 Accelerating Modernization with Agile Integration



Having created the implementation of REST APIs in the previous section we now want to 
expose them through an API Management system. This gives the ability to manage how the 
APIs are consumed, how traffic can be limited and how exposure to external parties is 
properly handled. 

6.3.1  Importing the API definition

There are two methods for exporting an IBM App Connect REST API to IBM API Connect.

Pushing from IBM App Connect to IBM API Connect
The first option is to make use of the Push REST APIs to API Connect... functionality which 
is available from the App Connect dashboard. This is documented in the IBM Knowledge 
Center: 
https://www.ibm.com/support/knowledgecenter/SSTTDS_11.0.0/com.ibm.etools.mft.doc/b
n28905_.htm 

Importing the API definition file
The second option is to import the API definition file manually. 

Perform the following steps to import API to the Developer Workspace:

1. First, you must create the API. To do that, click on Develop APIs and Products. See 
Figure 6-31 on page 191.

Figure 6-31   API Manager main page

2. Click on Add → API. See Figure 6-32.

Note: This functionality currently is possible in stand-alone instances of IBM App Connect 
to any given API Connect instance. Be aware that at the time of writing there was a 
limitation in IBM Cloud Pak for Integration deployments that meant a callback ‘POST’ to 
the IBM App Connect Server is not available.
Chapter 6. Practical agile integration 191

https://www.ibm.com/support/knowledgecenter/SSTTDS_11.0.0/com.ibm.etools.mft.doc/bn28905_.htm
https://www.ibm.com/support/knowledgecenter/SSTTDS_11.0.0/com.ibm.etools.mft.doc/bn28905_.htm


Figure 6-32   Import API to the developer workspace 1

3. Select From existing OpenAPI service. See Figure 6-33 on page 192.

Figure 6-33   Import API to the developer workspace 2

4. Click Next. See Figure 6-34.
192 Accelerating Modernization with Agile Integration



Figure 6-34   Import API to the developer workspace 3

5. Click Browse and choose the Swagger definition that you have downloaded from GitHub. 
See Figure 6-35.

Figure 6-35   Import API to the developer workspace 4

Note: Download the swagger definition from 
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-I
ntegration/blob/master/chapter6/database_operations_swagger.json.
Chapter 6. Practical agile integration 193

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/database_operations_swagger.json


6. Click Next. See Figure 6-36.

Figure 6-36   Import API to the developer workspace 5

7. The API should be imported successfully. Click Next. See Figure 6-37 on page 194.

Figure 6-37   Import API to the developer workspace 6

8. Accept the defaults and click Next. Figure 6-38.
194 Accelerating Modernization with Agile Integration



Figure 6-38   Import API to the developer workspace 7

9. Do not check Activate API and click Next. See Figure 6-39 on page 195.

Figure 6-39   Import API to the developer workspace 8

Descriptions:

Secure using Client ID - Select this option to require an Application to provide a Client ID 
(API Key). This causes the X-IBM-Client-Id parameter to be included in the request header 
for the API. When this option is selected, you can then select whether to limit the API calls 
on a per key (per Client ID).

CORS - Select this option to enable cross-origin resource sharing (CORS) support for your 
API. This allows your API to be accessed from another domain.
Chapter 6. Practical agile integration 195



6.3.2  Configuring the API

In this section we edit the API to include two different APIs from two microservices for the 
same business function. From a consumer point of view, it looks like a single API but it is 
actually connected to two different microservices at the back end. 

6.3.3  Merging two application flows into a single API

We have now deployed the Commands swagger into the API Management service of API 
Connect, either through the App Connect push functionality or through a direct import of the 
API definition into API Connect.

This API and Product now displays the command operations for the database (Add, Update, 
Delete), but not the query (Read). We add this query manually by navigating to the API in API 
Connect.

1. Navigate to the API Manager API Definition in API Connect for database_operations and 
select Paths (Figure 6-40 on page 196) and the /products (Figure 6-41 on page 196) 
path name.

Figure 6-40   API Definition in API Connect

Figure 6-41   API definition in API Connect in Path
196 Accelerating Modernization with Agile Integration



2. In the operations section, we select the Add button to include a get operation by toggling 
ON the get option and selecting Add. See Figure 6-42 on page 197.

Figure 6-42   Add the GET operation

3. Select the Get operation and give an Operation Id like getProducts and a Description 
like getProducts. See Figure 6-43 on page 198.
Chapter 6. Practical agile integration 197



Figure 6-43   Set OperationID and Description

4. In the same page toggle ON the following; Override API Produce Types, 
application/json, Override API Consume Types, application/json. See Figure 6-44 
on page 199.
198 Accelerating Modernization with Agile Integration



Figure 6-44   Set the Produces and Consumes types

5. On the same page, we go to Response and select Add before you set Status Code to 
200, Schema to object and Description to “The operation was successful”. See 
Figure 6-45.

Figure 6-45   Create a Response

6. Remember to Save the API before navigating to the Assemble view of the designer.

7. In the assemble view, we need to ensure that there is a Switch object to point to each of 
the four operations. If not, drag and drop the Switch object from the side panel into the 
assembly flow. See Figure 6-46 on page 200.
Chapter 6. Practical agile integration 199



Figure 6-46   Add a Switch statement

8. We add a case condition for each of the path parameters. Click on the Switch in the 
assembly, and click the + Case button 3 times to give four conditions. Select each to Add 
the operation from a list of available operations, one to each case. See Figure 6-47.

Figure 6-47   Add Cases for each operation
200 Accelerating Modernization with Agile Integration



9. For each operation we include a proxy for the POST, PUT, and DELETE operations and 
an invoke for the GET. The differences are described here:
https://chrisphillips-cminion.github.io/apiconnect/2017/07/17/Proxy-and-Invoke-
What-is-the-difference-in-API-Connect.html.) Also see Figure 6-48.

Figure 6-48   Add Proxy and Invokes for each assembly path

10.In the POST, PUT, and DELETE proxies we include the ACE Commands Endpoint and 
the GET invoke includes the ACE Query Endpoint. See Figure 6-49 on page 202.
Chapter 6. Practical agile integration 201

https://chrisphillips-cminion.github.io/apiconnect/2017/07/17/Proxy-and-Invoke-What-is-the-difference-in-API-Connect.html
https://chrisphillips-cminion.github.io/apiconnect/2017/07/17/Proxy-and-Invoke-What-is-the-difference-in-API-Connect.html


Figure 6-49   Define the required endpoints

11.Click Save.

Now that the API is ready to use, we can look at becoming the consumer of this API.

6.3.4  Add simple security to the API

In this section, we show you how to secure the API.

Configure API key security
In this section we will:

1. Define the API with simple security like API key and API secret

2. Publish the product

3. Test the API

Define simple security
Perform the following steps:

1. On the API page, click Security Definitions then click Add. See Figure 6-50.
202 Accelerating Modernization with Agile Integration



Figure 6-50   Defining the security 1

2. Under name type secret, choose APIKey for the Type and Located in Header. Then click 
Save. See Figure 6-51.

Figure 6-51   Defining the security 2

Your definitions should look like Figure 6-52 on page 204.
Chapter 6. Practical agile integration 203



Figure 6-52   Defining the security 3

Publish the product
Perform the following steps to publish the product:

1. Click Develop from the left side menu, then click the ellipsis (…) beside the API that you 
want to publish and click Publish. See Figure 6-53.

Figure 6-53   Publishing the product 1

2. Choose New Product and type in database_operation_product. Then click Next. See 
Figure 6-54.
204 Accelerating Modernization with Agile Integration



Figure 6-54   Publishing the product 2

3. Click Publish as shown in Figure 6-55.

Figure 6-55   Publishing the product 3

Test the product
1. Now you can test the API. Go to Assemble and click the highlighted box in Figure 6-56 on 

page 206.
Chapter 6. Practical agile integration 205



Figure 6-56   Testing the API 1

2. Click Activate API as shown in Figure 6-57.

Figure 6-57   Testing the API 2

3. Choose the operation to test. Here, we try the get operation. See Figure 6-58.
206 Accelerating Modernization with Agile Integration



Figure 6-58   Testing the API 3

4. Click Invoke. You receive the response from the back end with 200 OK. See Figure 6-59 on 
page 208.
Chapter 6. Practical agile integration 207



Figure 6-59   Testing the API (Response)

This was only a simple security using the API Key.

We have shown a basic invocation of the API using the internal testing mechanism. Of 
course, real consumers would first need to discover the API through the developer portal, 
then subscribe to use it. We cover this more formal discovery and subscription in “Subscribing 
to products” on page 296.
208 Accelerating Modernization with Agile Integration



6.4  Messaging for reliable asynchronous data update 
commands

In previous sections, we explored how to move existing centralized ESB based integrations 
into an Agile Integration paradigm. To do this, we broke the different integrations apart and 
exposed them through API management. This is a good start, but as part of your overall 
application modernization strategy, new integration patterns will also emerge.

A good example is event-based programming models for updates. For reasons such as 
performance or availability of a data source, you might decide to move toward these models 
and away from traditional synchronous data updates.

In the first section, we deliberately split the traditional CRUD (create, read, update, delete) 
into separate models for commands. The separate models make changes to data (create, 
update, delete) and to the other operations that query (search/read) data, to enable them to 
be changed and scaled independently. However, they were still synchronous in nature, 
dependent on the datastore's performance and availability.

We can make use of this separation and independently refactor the change operations to be 
asynchronous, without touching the query path. In our case, we do this by introducing IBM 
MQ instead of HTTP as the mechanism for the update. Just to be clear what we mean by this, 
we are not talking about changing only the transport from HTTP to IBM MQ. We are also 
changing the interaction pattern from request/response to fire and forget. This way, after a 
request has been made to change data, we can respond immediately to the calling system 
that the request has been received. We do not have to wait for it to be completed. So, we are 
no longer dependent on the back-end systems availability or performance. IBM MQ's assured 
delivery means that we can be confident that it will eventually happen. Furthermore, we can 
throttle and control when the updates are applied, so that in busy periods they do not affect 
the performance of queries.

Clearly this model introduces challenges. We don't know exactly when the update will occur. 
And there might be other updates from other consumers, too. So, we can never be entirely 
sure of the status of the data in the back-end system. Nowadays we use the term eventual 
consistency to describe this situation. Clearly it is better suited to some business scenarios 
than others. In our example, we decided that the increased availability and response time on 
updates to our "product" data, and the potentially more consistent performance on queries, 
are more important than knowing that the data is 100% consistent all the time.

The CQRS (Command Query Responsibility Segregation) pattern has become popular in 
recent years. Data changes (commands) and reads (queries) are treated as separate 

Important: Since the writing of this IBM Redbooks publication, the IBM Cloud Pak for 
Integration has embraced Kubernetes Operators (https://coreos.com/operators/). This 
significantly simplifies how components such as an Integration Server are installed and 
maintained, extending the features provided by Helm. There is more information and an 
excellent video demonstrating this new capability here:

https://developer.ibm.com/integration/blog/2020/06/28/ibm-app-connect-operator-
1-0-is-now-available/

It does unfortunately mean that some of the instructions describing the deployment of App 
Connect Enterprise in containers within this section are now out of date, and will need to 
be adapted to the use of operators. We may well look to update the book, but in the mean 
time, refer to the product documentation to find information on the new features.
Chapter 6. Practical agile integration 209

https://coreos.com/operators/
https://developer.ibm.com/integration/blog/2020/06/28/ibm-app-connect-operator-1-0-is-now-available/


implementations, to improve reliability and performance. The integrations for these two 
halves were already separate, but they were both acting synchronously on the same data 
source. What we are doing in this section can be described as implementing the "command" 
part of this pattern. In other words, we change the synchronous data changes into a series of 
asynchronous commands. In later sections, we look at creating even more separation on the 
"query" side.

Figure 6-60 on page 210 illustrates this pattern.

Figure 6-60   Command and Query pattern

In this section, we explore how you can use IBM MQ and IBM App Connect to implement the 
Command side of this pattern.

6.4.1  Enable create, update, delete via commands

One of the first choices you must make when implementing this side of the pattern is which 
protocol mechanism to use for sending the commands to the corresponding component. 

Because Commands represent a specific action that must occur, we use a one-way “PUT” to 
an IBM MQ queue. This approach allows us to decouple the requester from the 
implementation. At the same time, it provides a reliable messaging platform that allows event 
collaboration among the different services. IBM MQ's assured "exactly once" delivery of 
messages is ideal here. And its ability to participate in a transaction with a database offers 
even more options as we discuss later. 

For a clean design, you need three queues that represent each one of the commands. In 
addition, it is recommended to have two extra queues, one to store potential errors and a 

(MQ)

Create
Update
Delete
(AC-IS)

Search
&

Read
(AC-IS)

(APIC)

Query 
via
API

Command 
via 

Messaging

PRODUCTS
datastore

(DB2)

IBM App Connect
(Integration Server runtime)(AC-IS)

(DB2)
IBM DB2 database

(APIC) IBM API Connect

(MQ)

IBM MQ 
(Queue Manager component)
210 Accelerating Modernization with Agile Integration



second one to log the activity. The second queue can be replaced by any other logging 
framework that is available in the platform, but we use it here for illustration purposes.

In the next section we show you how to create an IBM MQ queue manager, and the 
necessary queues for this part of the solution. However, you might already have an existing 
IBM MQ queue manager (or already have the skills to create one). Example 6-2 on page 211 
shows the list of IBM MQ commands that you need to create the corresponding queues and 
the needed authorization records:

Example 6-2   List of IBM MQ commands

DEF QLOCAL(DB.LOG)
DEF QLOCAL(DB.ERROR)
DEF QLOCAL(DB.CREATE) BOTHRESH(1) BOQNAME(DB.ERROR)
DEF QLOCAL(DB.UPDATE) BOTHRESH(1) BOQNAME(DB.ERROR)
DEF QLOCAL(DB.DELETE) BOTHRESH(1) BOQNAME(DB.ERROR)
SET AUTHREC PROFILE('DB.LOG') OBJTYPE(QUEUE) principal('user11') AUTHADD(ALL)
SET AUTHREC PROFILE('DB.ERROR') OBJTYPE(QUEUE) principal('user11') AUTHADD(ALL)
SET AUTHREC PROFILE('DB.CREATE') OBJTYPE(QUEUE) principal('user11') AUTHADD(ALL)
SET AUTHREC PROFILE('DB.UPDATE') OBJTYPE(QUEUE) principal('user11') AUTHADD(ALL)
SET AUTHREC PROFILE('DB.DELETE') OBJTYPE(QUEUE) principal('user11') AUTHADD(ALL)

Notice that we are taking advantage of the backout feature in IBM MQ to handle potential 
poison messages. Poison messages are ones that cannot be processed by the receiving 
system for some reason, but that we do not want to lose until we have had the opportunity to 
review them. This is also useful for transactional requirements that are discussed later in the 
section.

6.4.2  Deploy and configure Queue Manager

Now that you have decided to use an asynchronous messaging model, we can leverage the 
messaging capabilities that are provided by the Cloud Pak for Integration via IBM MQ.

1. Start creating a new instance. For that you can go to the Platform Navigator page and 
select Add new instance from the MQ tile as shown in Figure 6-61.
Chapter 6. Practical agile integration 211



Figure 6-61   Creating a new IBM MQ instance - 1

2. You see the following pop-up window (Figure 6-62 on page 212) that provides a brief 
explanation about some prerequisites for deployment of IBM MQ. This is something that 
was usually configured at installation time, but you can check with your administrator, as 
suggested, to validate. After you confirm that your Cloud Pak for Integration is properly 
configured you can click Continue.

Figure 6-62   Creating a new IBM MQ instance - 2
212 Accelerating Modernization with Agile Integration



3. This launches the helm chart that guides you through the deployment process. In the first 
section of the form, you are required to enter the name of the Helm release, and the 
namespace and cluster where the queue manager will be deployed. For this scenario, we 
used the following values:

� Helm release name: mqicp4

� Target namespace: mq

� Target cluster: local-cluster

You need to check the license box where you confirm that you have read and agreed to the 
licensing agreement. Figure 6-63 on page 213 shows the information:

Figure 6-63   Creating a new IBM MQ instance - 3

4. You can scroll down to access the next set of fields starting with Pod Security. In this 
section you need to provide only the FQN of the proxy that gives access to your cluster. 
See Figure 6-64.
Chapter 6. Practical agile integration 213



Figure 6-64   Creating a new IBM MQ instance - 4

Then you scroll down and expand the All Parameters section to review and modify the rest of 
the parameters. You can clear the Production Usage field, because this deployment is for 
test purposes. You can accept the default values for “Image repository” and “Image tag”, 
unless you want to use your own image. We discuss this scenario later on. Enter the value of 
the secret with the credentials to access your registry in order to be able to pull the images. In 
our test environment it is called entitled-registry. And we recommend that you select 
Always for the image pull policy, so that you are sure to always get the most recent image in 
the registry. But you can use the other options if needed. Figure 6-65 on page 214 shows the 
screen with the values:

Figure 6-65   Creating a new IBM MQ instance - 5

5. You can keep the IBM Cloud Pak for Integration section with the default values as shown i 
in Figure 6-66.
214 Accelerating Modernization with Agile Integration



Figure 6-66   Creating a new IBM MQ instance - 6

6. In the next section, select the Generate Certificate checkbox to get a new certificate for 
the queue manager. The cluster hostname field is prepopulated with the value that you 
entered in the first part of the form. Figure 6-67 on page 215 shows the form:

Figure 6-67   Creating a new IBM MQ instance - 7

7. The next section in the form is the particular relevance for IBM MQ. By definition the 
storage in a container is ephemeral. In other words, if for some reason the pod where the 
container is running dies, the storage that is reserved for the container is also destroyed. 
And that behavior doesn’t fit well with a resource manager like IBM MQ. With MQ, you can 
Chapter 6. Practical agile integration 215



have persistent messages that should be preserved in case of a server or queue manager 
failure. 

The good news is that specialized elements allow you to externalize the storage that is 
assigned to a pod (container). Therefore, you preserve the information (queues, 
messages, and so on) that is created by the queue manager. 

The specific field to configure this is called “Enabled persistence.” For the test scenario we 
have cleared this field, but for a production environment you probably must enable it. After 
you decide to enable this option, you can dynamically allocate the required storage. For 
this, you must select the Use dynamic provisioning box. In our case, we can clear the 
box, because we didn’t enable persistent storage.

If you do not want to use dynamic provisioning, you can still enable persistence, but you 
must create the persistence volume claim (PVC) beforehand and provide the 
corresponding name. If you opted for dynamic provisioning you must provide the proper 
storage class name. Figure 6-68 on page 216 shows the four field reflecting our 
assumption that no persistence is required.

Figure 6-68   Creating a new IBM MQ instance - 8

8. The next section gives you the option to separate the Logs and Queue Manager 
configuration settings in different persistence volume claims. This approach is similar to 
what you would do with a regular queue manager and the file system that is associated. 
But in this case everything is parameterized. In our case, we left the boxed cleared 
because we decided not to enable persistence storage. See Figure 6-69 on page 217.
216 Accelerating Modernization with Agile Integration



Figure 6-69   Creating a new IBM MQ instance - 9

9. The next section will allow you to assign the resources (CPU and memory) that will be 
assigned to the queue manager. For testing purposes we will use the default values, but 
for a production environment you can do a sizing exercise to assign the values that fit your 
needs. For the security section you can use the default values as shown in Figure 6-70 on 
page 217.

Figure 6-70   Creating a new IBM MQ instance - 10

10.Make sure the box for the last parameter around security named Initialize volume as 
root is checked to avoid any issue concerning access to the file system that is assigned to 
the container. See Figure 6-71.
Chapter 6. Practical agile integration 217



Figure 6-71   Creating a new IBM MQ instance - 11

11.You can leave the rest of the form with the default values as shown in Figure 6-72 and 
Figure 6-73 on page 219.

Figure 6-72   Creating a new IBM MQ instance - 12
218 Accelerating Modernization with Agile Integration



Figure 6-73   Creating a new IBM MQ instance - 13

12.After you review all the parameters, click on Install to start the deployment. See 
Figure 6-74 on page 219.

Figure 6-74   Creating a new IBM MQ instance - 14

13.After a few moments you receive the following message indicating that the deployment 
has started. See Figure 6-75.
Chapter 6. Practical agile integration 219



Figure 6-75   Creating a new IBM MQ instance - 15

14.Next we will monitor the progress of the deployment to confirm that there are no errors 
and start working with the queue manager. For that, you click on the View Helm Release 
button from the previous pop up window.

This action takes you to the Cloud Pak Foundation view for Helm Releases. After the new 
window is open, look for the name used for your deployment. If you are using the names 
suggested in the book it will be “mqicp4i”, as shown in Figure 6-76 on page 220.

Figure 6-76   Creating a new IBM MQ instance - 16

15.After you find the deployment, click on the name to get the detail. In the new screen, scroll 
down to check the different objects that are part of the deployment. The one that we will 
explore in more detail is the StatefulSet, which includes the Pod with the actual queue 
manager process. But before moving to the next screen, write down the commands 
provided in the Notes section so that you can get the connection information to the queue 
manager. We will need this information when we work on the integration project.

See Figure 6-77 through Figure 6-80 on page 222.
220 Accelerating Modernization with Agile Integration



Figure 6-77   Creating a new IBM MQ instance - 17

Figure 6-78   Creating a new IBM MQ instance - 18
Chapter 6. Practical agile integration 221



Figure 6-79   Creating a new IBM MQ instance - 19

Figure 6-80   Creating a new IBM MQ instance - 20

16.After you click on the StatefulSet link you see the following screen (Figure 6-81 on 
page 223) with the details. From there you can drill down in the pod to review the events it 
has produced.
222 Accelerating Modernization with Agile Integration



Figure 6-81   Creating a new IBM MQ instance - 21

17.In the Pod screen, check the Status to confirm that the queue manager is running. You 
could have seen the status from previous screens, but we want to show how you can 
navigate to the pod for potential troubleshooting situations to review the events that were 
produced during startup. See Figure 6-82 on page 223.

Figure 6-82   Creating a new IBM MQ instance - 22

18.When you have confirmed the queue manager is up and running, go back to the window 
where you initiated the deployment and click Done to close the pop-up window.
Chapter 6. Practical agile integration 223



Figure 6-83   Creating a new IBM MQ instance - 23

19.After you close the pop-up window, you see that the new queue manager is displayed in 
the MQ tile.

Figure 6-84   Creating a new IBM MQ instance - 24
224 Accelerating Modernization with Agile Integration



6.4.3  Queue manager configuration

Now that the queue manager is up and running, you configure it with the objects that are 
required by the integration project. The objects were listed in the previous section as MQSC 
commands. In order to show several alternatives, we use the new MQ Web UI to create the 
same objects.

1. After you click in, the queue manager name is displayed in the MQ tile with all the queue 
managers you have available in the Cloud Pak for Integration. You are taken to the initial 
queue manager web UI. As you can see, only the Local Queue Manager widget is 
available. To configure the required objects, you need to add some other widgets. Click the 
Widget button as shown in Figure 6-85 on page 225.

Figure 6-85   Queue manager configuration -1

2. The Add a new widget dialog is displayed where you can select the different IBM MQ 
objects that you want to administer. Click the Queues item as shown in Figure 6-87.

Figure 6-86   Queue manager configuration -2
Chapter 6. Practical agile integration 225



3. The corresponding widget is added to the administration console as shown in Figure 6-87.

Figure 6-87   Queue manager configuration -3

4. Repeat the same process to add the Listener and Channel widgets. The web UI will look 
like Figure 6-88 after you have added the widgets.

Figure 6-88   Queue manager configuration -4

5. We won’t create any additional Listener, but we have added the widget to validate the 
default listener was properly configured when we deployed the queue manager. To do this 
you hover over the gear icon in the Listener widget and click on it to configure it, as shown 
in Figure 6-89 on page 227.
226 Accelerating Modernization with Agile Integration



Figure 6-89   Queue manager configuration -5

6. The Listeners configuration dialog is displayed, where you select Show System objects, 
and then click Save as shown in the next figure.

Figure 6-90   Queue manager configuration -6

7. The system objects are displayed, and you can see the default listener in the known port 
1414 is already running. See Figure 6-91 on page 228.
Chapter 6. Practical agile integration 227



Figure 6-91   Queue manager configuration -7

Now that we know the listener is up and running, we can proceed to create the required 
Server Channel. This channel allows the connection between our integration flow running in 
IBM App Connect with the queue manager that we just deployed. To do this, click the Create 
button in the Channels widget as shown in Figure 6-92 on page 229.
228 Accelerating Modernization with Agile Integration



Figure 6-92   Queue manager configuration -8

8. The Create a Channel dialog box is displayed. In the window, select the type of channel to 
create to adjust the fields that we need to provide. In this case, we choose the 
Server-connection. Then, enter the name of the channel, in this case ACE.TO.MQ. But 
you can use another name. Just be sure to write it down, because you will need this value 
when you configure the IBM MQ policy in your integration flow. Finally, click Create. 
Figure 6-93 on page 230 illustrates the process.
Chapter 6. Practical agile integration 229



Figure 6-93   Queue manager configuration -9

9. After a moment the widget will be updated to show the newly created channel. Notice that 
the channel is in an Inactive status. This status is normal, because we haven’t deployed 
yet the integration flow that will use the channel. (You have the option to come back after 
you deploy the Integration flow to confirm that the status has changed to Active. See 
Figure 6-94 on page 231.
230 Accelerating Modernization with Agile Integration



Figure 6-94   Queue manager configuration -10

Now we can define the queues to use in our integration project. Similar to the channel, move 
to the Queues widget and click on the Create button as shown in Figure 6-95 on page 232.
Chapter 6. Practical agile integration 231



Figure 6-95   Queue manager configuration -11

10.The Create a Queue dialog is displayed where you provide the name and queue type for 
the definition of the required objects. Using the first queue in the list, we enter DB.LOG as 
the Queue name and Local as the Queue type. Then click the Create button as shown in 
Figure 6-96. 
232 Accelerating Modernization with Agile Integration



Figure 6-96   Queue manager configuration -12

11.After a moment the Queues widget is updated to include the newly created queue. See 
Figure 6-97.

Figure 6-97   Queue manager configuration -13
Chapter 6. Practical agile integration 233



12.Repeat the same process to create the rest of the queues. As mentioned before, the 
queue names are: DB.ERROR, DB.CREATE, DB.UPDATE, and DB.DELETE. All of them 
being local queues. At the end, you see something like Figure 6-98 on page 234.

Figure 6-98   Queue manager configuration -14

13.To complete the configuration, we need to update the definition for the three queues that 
will process the commands to handle errors and cope with potential poison messages. In 
the Queues widget, select the DB.CREATE queue, hover over the Properties icon, and 
click on it as shown in Figure 6-99 on page 235.
234 Accelerating Modernization with Agile Integration



Figure 6-99   Queue manager configuration -15

14.This opens the Properties window for this particular queue. You can explore all the 
parameters, but for our scenario, we will move to the Storage section where we will update 
the fields Backout requeue queue and Backout threshold. Specifically, we use the 
DB.ERROR queue that we created in the previous step and assign a value of 1 to the 
threshold. Depending on your situation, you could use a different value for the threshold, 
but for the sample scenario we will consider an error after the first attempt. After you enter 
the values, click Save to update the queue as shown in Figure 6-100 on page 236.
Chapter 6. Practical agile integration 235



Figure 6-100   Queue manager configuration -16

15.The warning message that you have seen regarding unsaved changes now changes to a 
new message stating that the properties have been saved. Now you can click Close to 
return to the Queues widget and proceed to update the other two queues that we are 
missing.

Figure 6-101   Queue manager configuration -17

To complete the configuration, repeat the process for queues DB.DELETE and DB.UPDATE.

16.After you update the queues you have all the objects that are required for the scenario. 
However, due to the security changes that were recently introduced by IBM MQ, you also 
236 Accelerating Modernization with Agile Integration



need to create the corresponding Authority Records. These records allow a user to 
interact with the queues.

Since this is a demonstration scenario, instead of working with Authority Records we show 
how to disable Connection Authentication at the queue manager level. Keep in mind, this 
is only for testing purposes. Disabling security is not recommended in a production 
environment. 

17.To disable connection security checking, you need to modify the queue manager 
configuration. To do that, select the queue manager name from the Local Queue 
Managers widget and hover over the Properties button, clicking it as shown in 
Figure 6-102.

Figure 6-102   Queue manager configuration -18

18.This click opens the queue manager properties window. Navigate to the Communication 
section and change the CHLAUTH records field to the Disabled value. Then click Save to 
update the property has shown in Figure 6-103 on page 238.

Note: You can check 9.4, “Automation of IBM MQ provisioning using a DevOps 
pipeline” on page 594. That section describes how to create a queue manager using 
DevOps, alongside with the MQSC commands that are listed in the previous section to 
include the required security as part of your configuration.
Chapter 6. Practical agile integration 237



Figure 6-103   Queue manager configuration -19

19.This action removes the warning message and confirms that the changes were applied. 
Now you can click Close as shown in Figure 6-104.

Figure 6-104   Queue manager configuration -20

20.To avoid potential issues using an administrator user we also disable Client Connection 
checking. Don’t forget that we do this for simplicity reasons, but this is not recommended 
in a production environment.
First, we add the Authentication Information widget and we configure to Show System 
objects as we explained before. This adds the tile to the web UI that is shown in 
Figure 6-105 on page 239.
238 Accelerating Modernization with Agile Integration



Figure 6-105   Queue manager configuration -21

21.After the system objects are displayed in the widget, select 
SYSTEM.DEFAULT.AUTHINFO.IDPWOS and hover over the Properties menu and click 
on it as shown in Figure 6-106 on page 240.
Chapter 6. Practical agile integration 239



Figure 6-106   Queue manager configuration -22

22.In the Properties window, navigate to the User ID + password section, and modify the 
value of the Client connections field to None. Then, click Save as shown in Figure 6-107.

Figure 6-107   Queue manager configuration -23

23.This removes the warning message about unsaved changes and confirms that the 
properties have been saved. Now you can click Close as shown in Figure 6-108 on 
page 241.
240 Accelerating Modernization with Agile Integration



Figure 6-108   Queue manager configuration -24

24.This takes you to the main administration page and now you can proceed to the final step 
before you continue with the integration flow development. We need to refresh security to 
ensure that the changes we made take effect. Scroll as needed to make the Local Queue 
Manager widget visible. Hover over the ellipsis (...) in the upper menu bar to display the 
other menu and select the Refresh security option as shown in Figure 6-109.

Figure 6-109   Queue manager configuration -25

25.In the new Refresh security dialog click the Connection authentication link as shown in 
Figure 6-110.
Chapter 6. Practical agile integration 241



Figure 6-110   Queue manager configuration -26

26.A message in the upper part of the Web UI indicates that queue manager security was 
refreshed successfully. Click the X to the right side of the message to dismiss it, as shown 
in Figure 6-111.

Figure 6-111   Queue manager configuration -27

We are now ready to start the implementation of the integration flow. 

6.4.4  DB commands implementation

In the initial design we will leverage the fact that IBM App Connect doesn’t require a local 
queue manager any more. And we will connect to a central queue manager that acts as the 
messaging backbone for the whole environment that has been configured with the 
corresponding persistence volumes to handle high availability. Later on, we will explore the 
need to support two-phase commit (2PC) and what changes are required to address this 
requirement. For now, this is the logical representation of the solution.

Figure 6-112 shows the IBM Cloud Pak for Integration Cluster.
242 Accelerating Modernization with Agile Integration



Figure 6-112   IBM Cloud Pak for Integration Cluster

The advantage of using IBM App Connect and IBM MQ to build what is effectively a 
microservice component is that you can leverage the existing skills in your integration 
community. As you will see, the design of the integration flow in IBM App Connect uses the 
same core concepts that you have used in the past to interact with IBM MQ and a database.

You can use the steps outlined in 6.2.2, “Db2 table setup” on page 178 to create the 
resources needed in the Toolkit to interact with a database. As a reference, in the sample 
implementation we are presenting here, you need a database connection, a database project, 
and the corresponding database definition as shown in Figure 6-113 and Figure 6-114 on 
page 244.

Figure 6-113   Database connection -1
Chapter 6. Practical agile integration 243



Figure 6-114   Figure 6-115 Database connection -2

Figure 6-115 shows the structure of the application.

Figure 6-115   Structure of the application

We have three integration flows, one for each command. The interaction with the database 
will leverage the database capabilities in the graphical map node. Therefore we have a map 
for each one of the commands as well.

We will also take advantage of the new capabilities in IBM App Connect to include the jdbc 
driver as part of the BAR file. So we have included it in the application to minimize external 
dependencies.
244 Accelerating Modernization with Agile Integration



We need to include the reference to the database project so we can use the database 
definitions in the graphical maps.

In this case we are going to use JSON as the data format to receive the data that will be 
processed by the commands. So we need to create and include the corresponding JSON 
schema to simplify the mapping in the map nodes as well.

Example 6-3 shows the JSON schema that is used in the product.json file, which maps the 
database data model used in this scenario.

Example 6-3   JSON schema used in the product.json file

{
  "$id": "https://example.com/person.schema.json",
  "$schema": "http://json-schema.org/draft-07/schema#",
  "title": "Product",
  "type": "object",
  "properties": {
    "lastUpdate": {
      "type": "string"
    },
    "partNumber": {
      "type": "integer"
    },
    "productName": {
      "type": "string"
    },
    "quantity": {
      "type": "integer"
    },
    "description": {
      "type": "string"
    }
  }
}

The three flows follow the same basic model as the one depicted in Figure 6-116 on 
page 245. The differences will be in the queue name that is used in the MQ Input Node called 
DB Command, and of course in the logic inside the Graphical Map Node called Process 
Action. 

Figure 6-116   The flows

Note: This is the bare-minimum information that is required to create the JSON schema. In 
a real-life scenario you might need to extend it.
Chapter 6. Practical agile integration 245



To enable the connectivity to the queue manager and the database we will use the new 
policies introduced in IBM App Connect that will be included with the BAR file as well. In this 
way, we minimize external dependencies and fit better in the containerized world of agile 
integration. We will discuss the policies in the next section.

6.4.5  Graphical data maps implementation

IBM App Connect provides several ways to interact with databases, including ESQL, Java, 
and graphical data maps (GDM) among others. For this scenario, we decided to use GDMs to 
avoid writing any code. But in a real-life scenario you can rely on any of the other options, 
depending on your particular needs.

Create command
Figure 6-117 shows how the map for the Create command looks like.

Figure 6-117   Map for the Create command

As shown in Figure 6-117, we are using the Insert a row into a database table function. It 
is important to mention that we were able to get the data structure for the input message 
since we included the JSON schema file as part of the project. Additionally we are mapping 
the return result from the insert to a single field that will be logged, but here you could add any 
other information you need.

And this is how the actual mapping looks like, as you can see it is a simple and straight 
forward mapping. The advantage of using similar names in your data models is that you can 
take advantage of the “auto map” feature available in GDM. This option is highlighted in 
Figure 6-118.

Note: The purpose of the scenario is to show the core principles to implement the 
commands. No error handling is included beyond the backout configuration of the queues.
246 Accelerating Modernization with Agile Integration



Figure 6-118   Auto-map feature

Update command
Figure 6-119 shows the map for the Update command.

Figure 6-119   Map for the Update command

In this case, we are using the Update a row into a database table function. Instead of 
using straight moves, we are evaluating if each field is present to proceed to do the actual 
move, this way we avoid undesired consequences. The map looks like in Figure 6-120 on 
page 248.
Chapter 6. Practical agile integration 247



Figure 6-120   Update a row into a database table function

The other important difference versus the Insert map is that for the update we have included 
a “where” clause. This clause is based on the partNumber field that is provided in the input 
message, which corresponds to the primary key in the table. The definition looks like 
Figure 6-121 on page 249.
248 Accelerating Modernization with Agile Integration



Figure 6-121   Modify Database Table Update

Delete command
Figure 6-122 shows the map for the Delete command.

Figure 6-122   Map for the Delete command
Chapter 6. Practical agile integration 249



In this case, no data mapping is needed. We just need to set the “where” clause properly to 
the corresponding input field, so that we delete the right record. Figure 6-123 shows how the 
configuration would look.

Figure 6-123   Modify Database Table Delete

6.4.6  Policy definitions

After the Integration Flow is ready, the other important elements are the policies associated 
with the two external resources that are required. Figure 6-124 on page 251 shows the 
definitions for both policies in the corresponding Policy Project.
250 Accelerating Modernization with Agile Integration



Figure 6-124   Policy definitions 

In Figure 6-124 1 corresponds to the IBM MQ Endpoint policy and 2 corresponds to the JDBC 
Provider policy.

The properties for the IBM MQ Endpoint are the shown in Figure 6-125.

Figure 6-125   MQ Endpoint policy properties

Some relevant points about the policy are:

1. This corresponds to a client connection since we are connecting to a remote queue 
manager as mentioned above.
Chapter 6. Practical agile integration 251



2. The queue manager hostname corresponds to the internal DNS value of the Cloud Pak for 
Integration Cluster since the Integration Server is running in the same cluster. If for some 
reason the queue manager would be running outside the cluster, you use the 
corresponding value here.

3. The same applies to the listener port. Inside the cluster the queue manager is listening in 
the default 1414 port. But if you wanted to access the same queue manager from a 
different location you would need to use the corresponding Node Port value.

4. The security identity corresponds to the secret that was defined in 6.5.3, “Securing the 
API” on page 265.

The properties for the JDBC Provider are the following shown in Figure 6-126.

Figure 6-126   JDBC Provider policy properties

In this case, the highlights are as follows:

� The name of the policy must match the name of the database, as required by the GDM.

� The server name used is the one used inside the cluster, similar to what we did with the 
queue manager. If you wanted to access the server from outside the cluster, then the 
cluster IP address or equivalent DNS must be used.

� The port value is the same, internally Db2 is listening in the default port, but if your 
integration server would be running outside the cluster you must use the Node Port value 
instead.

� For the initial scenario we have not enabled global transaction coordination. In the next 
section we will discuss when you might want to enable this feature.
252 Accelerating Modernization with Agile Integration



� As mentioned before, we have included the jdbc JAR file as part of the project as it is good 
cloud native practice to avoid external dependencies. To use the driver, we need to enable 
this property to make sure that the Integration Server uses the embedded driver.

6.4.7  BAR file creation 

After you have developed the integration application and configured the associated policies, 
you can proceed to prepare the corresponding BAR file.

1. Start selecting the application as in Figure 6-127.

Figure 6-127   BAR file creation -1

2. Include the Policies project. Remember, this is one of the changes introduced with IBM 
App Connect. Policies replaced Configurable Services to provide a stateless configuration 
model that also allows you to include the policy with your BAR file. We take advantage of 
this feature now, to minimize external dependencies and fit better in the agile integration 
paradigm. See Figure 6-128 on page 254.
Chapter 6. Practical agile integration 253



Figure 6-128   BAR file creation -2

3. After you have included both resources, the BAR file content will look like Figure 6-129 on 
page 255 and you can proceed to build the BAR file.
254 Accelerating Modernization with Agile Integration



Figure 6-129   BAR file creation -3

4. At the end, you have the BAR file that you can deploy into the IBM Cloud Pak for 
Integration using the Application Integration dashboard. You can check 6.2, “Application 
Integration to front a data store with a basic API” on page 173 for the details in the steps 
needed to complete the deployment. 

6.4.8  Override policies for environment specific values

IBM App Connect gives you the option to embed the policies where you have configured your 
end points in a single BAR file. However, there will always be circumstances where you want 
to have the flexibility to override some values. In our example, for instance, we need to 
override the queue manager hostname and the database server name. That way, we can use 
the same integration solution in multiple environments — like production and quality 
assurance — without having to create multiple BAR files. We want to be able to treat the bar 
file as the unchanging source code and just override the environment-specific values each 
time.

To handle this situation, IBM Cloud Pak for Integration gives you the option to provide a set of 
properties in the form of secret keys. You can use the keys at deployment time to override 
values in the policies. The only consideration is that you need to create the secret before you 
perform the deployment since you will use the name of the secret when you configure the 
deployment.
Chapter 6. Practical agile integration 255



1. As part of the deployment process you are asked to provide the BAR file and then you get 
the following pop-up window (Figure 6-130 on page 256). There, you have the opportunity 
to download a configuration package that includes the instructions for creating the secret 
for the deployment.

Figure 6-130   Download configuration package

2. The file you download is called config.tar.gz, which provides empty files for all the things 
that you can pass within a secret to Kubernetes for IBM App Connect to pick up on 
start-up. It also provides a script to generate the secret that we will use later. The content 
of the config.tar.gz is shown in Figure 6-131.

Figure 6-131   config.tar.gz file contents
256 Accelerating Modernization with Agile Integration



As you can see, there are multiple files within config.tar.gz you can configure but for this 
particular scenario the relevant elements are policyDescriptor.xml and policy.xml. 

3. We now need to copy the policy information across from our IBM App Connect Toolkit 
workspace into the files in the folder where we untared the config.tar.gz file. In this sample, 
we focus on the JDBC policy.

a. Copy the content of the JDBC policy file (PRODUCTS.policyxml) from your IBM App 
Connect Toolkit Workspace, and paste it into the policy.xml file. 

b. Copy the content of the policy descriptor file (policy.descriptor) from your IBM App 
Connect Toolkit workspace, and paste it into the policyDescriptor.xml file.

4. You can now proceed to generate the secret using the following command, which is also 
included with the package:

./generateSecrets.sh <config-secret>

Note that in order to execute the command successfully you need to be logged in to your 
OCP cluster and using the right project, by default it should be ace.

5. Finally, you use the secret that you created when you were asked to configure the 
deployment. The field that must include the secret created is highlighted in Figure 6-132. 
For more details about the full deployment process for a BAR file, see 6.2, “Application 
Integration to front a data store with a basic API” on page 173.

Figure 6-132   secret file

6.4.9  Global transaction coordination considerations

The design used above achieves the desired goal of implementing the commands to 
Create/Update/Delete a data source using the Command Query Responsibility Separation 
(CQRS) paradigm. However, there is an aspect that needs to be considered if the 
implementation needs to assure consistency among the resource managers that are 
involved. In this case Db2 and MQ are involved. 

As discussed previously, the scenario involves receiving a message with the command 
instructions and the data to modify the database. Then we are just sending a result message 
to another queue for logging purposes. Now imagine, there is a business requirement to 
guarantee that the logging messages are consistent with any change to the database in case 
there is a failure in any of the two resource managers. 
Chapter 6. Practical agile integration 257



In other words, we need to treat the whole flow as a single unit of work. If we cannot 
successfully put the log message in the queue, then we need to roll back the change that we 
made to the database in the previous step. When we want to make consistent changes 
across separate resources such as a database and a queue, this is known as Global 
Transaction Coordination or Two-Phase Commit (2PC). The good news is that this is 
something that IBM App Connect has supported for many years even in its incarnations (such 
as IBM Integration Bus, WebSphere Message Broker). However, you need to take into 
account some considerations in the container world, whenever you need to address such a 
requirement. 

IBM App Connect relies on IBM MQ to act as the global transaction coordinator, as explained 
in the IBM Knowledge Center article titled “Message flow transactions”:
https://www.ibm.com/support/knowledgecenter/en/SSTTDS_11.0.0/com.ibm.etools.mft.do
c/ac00645_.htm
If you need to have 2PC, instead of using a remote queue manager, you must create your 
container using an image that includes both IBM App Connect and a local IBM MQ server.

Refer to the section “When IBM App Connect needs a local queue manager” for additional 
details. A high-level diagram for this scenario is shown in Figure 6-133.

Figure 6-133   High-level diagram for the scenario

In this case, you would need to change the JDBC Provided policy to enable “Support for XA 
coordinated transactions” and make sure that the driver you are using is a JDBC Type 4. 
Additionally, two extra configuration changes are required to the associated local queue 
manager:

1. Modify the qm.ini file associated with the queue manager to include a stanza entry for the 
database with the following format (Example 6-4 on page 258):

Example 6-4   qm.ini file 

XAResourceManager:
       Name=<Database_Name>
       SwitchFile=JDBCSwitch
       XAOpenString=<JDBC_DataSource>
       ThreadOfControl=THREAD

in our case it would look like this:
258 Accelerating Modernization with Agile Integration

https://www.ibm.com/support/knowledgecenter/en/SSTTDS_11.0.0/com.ibm.etools.mft.doc/ac00645_.htm


XAResourceManager:
       Name=SAMPLES
       SwitchFile=JDBCSwitch
       XAOpenString=SAMPLES
       ThreadOfControl=THREAD

2. Set up queue manager access to the switch file by creating a symbolic link to the switch 
files that are supplied in the IBM App Connect installation directory. The command would 
be something like the following:

ln -s /opt/ibm/ace-11/server/lib/libJDBCSwitch.so /var/mqm/exits64/JDBCSwitch

For additional details you can check the IBM App Connect Knowledge Center article titled 
“Configuring a JDBC type 4 connection for globally coordinated transactions”:
https://www.ibm.com/support/knowledgecenter/SSTTDS_11.0.0/com.ibm.etools.mft.do
c/ah61330_.htm

With this in mind, it is important to mention that at the moment of writing this IBM 
Redbooks publication there is no way to inject those changes at deployment time of the 
IBM App Connect and IBM MQ container. Therefore, if you need to implement two-phase 
commit for your integration flows, you must use kubectl in order to access the pod you 
have deployed. Then, make the changes directly there. However, IBM’s labs are exploring 
the best option to handle this scenario in the future to have a more natural way to 
implement it. We will provide an update in the form of a technote after a different approach 
is defined.

6.4.10  Conclusion

In this section we have demonstrated how you can use IBM App Connect and IBM MQ as 
part of the IBM Cloud Pak for Integration to implement the “command” side of the Command 
Query Separation pattern to interact with IBM Db2 using one-phase commit and leverage 
your existing skills on IBM App Connect and IBM MQ, but we also highlighted the new 
functionality that is introduced in IBM App Connect to fit better in the agile integration 
paradigm. And finally we discussed the considerations for implementation of a two-phase 
commit.

6.5  Consolidate the new IBM MQ based command pattern into 
the API

In 6.4, “Messaging for reliable asynchronous data update commands” on page 209 we 
discussed how to use IBM App Connect and IBM MQ to implement the Command side of the 
Command Query Responsibility Segregating (CQRS) pattern. Using a fire-and-forget pattern 
over a messaging transport such as IBM MQ was a good option to address the performance 
issues related to slow response times, and provide availability that is not tied to that of the 
database.

However, there is an issue with this approach. It requires that the consumer of this service 
must have the ability to talk to IBM MQ. This requires IBM MQ specific client-side libraries, 
and indeed the knowledge to use them. We could reduce the knowledge burden on the 
developer by using the standards-based JMS library to talk to IBM MQ. That way, they would 
not need to know IBM MQ. But JMS itself is still a reasonably complex interface to learn if you 
have not used it before.
Chapter 6. Practical agile integration 259



A good alternative is to make the act of putting the message on an IBM MQ queue available 
via RESTful API. This provides perhaps the lowest barrier to implementation for most 
developers, regardless of the programming language they are using.

Notice that we don't have to choose API or IBM MQ, we can have both. We can use the direct 
IBM MQ-based interface for consumers of the service that would prefer the improved 
reliability that the IBM MQ Client can provide compared to an HTTP-based API.

In this section we explore how to expose the IBM MQ based "Command" implementation as a 
RESTful API façade. We keep the messaging layer in place beneath the API to continue to 
decouple the interaction with the data source and retain the benefits of the command pattern. 
Figure 6-134 on page 260 shows the extended model.

Figure 6-134   Command pattern exposed as an API

As in previous sections, we will use IBM API Connect (APIC) to expose the API providing 
discovery, access control, traffic management, governance, and security as discussed in 6.3, 
“Expose an API using API Management” on page 190. 

APIC uses the OpenAPI specification formerly known as Swagger to model the API. 

6.5.1  Defining the API data model

The first thing we need to include is the data models — known as “Definitions” in the API 
world — that will be supported by the API. We will use this information when we work in other 
areas of the API. This is equivalent to the product.json file we used in IBM App Connect. 
However, in this case you create the definition as part of the API, because we want the API 
specification be self-explanatory and to use it as documentation as well, as shown in 
Figure 6-135 on page 261. 

Create
Update
Delete
(AC-IS)

Search
&

Read
(AC-IS)

ODBC

JSON/HTTP

API Management (APIC)

Consolidated
API

PRODUCTS
datastore

(DB2)

JSON/HTTP

IBM App Connect
(Integration Server runtime)(AC-IS)

(DB2) IBM DB2 database

(APIC) IBM API Connect
260 Accelerating Modernization with Agile Integration



Figure 6-135   Product definitions

The details for the product definition are shown in Figure 6-136.

Figure 6-136   Product definitions- edit

6.5.2  Paths 

Now that we have the definitions, we can move to the paths that will represent the location the 
API can be invoked. To keep a similar approach to the integration flows created in IBM App 
Connect, we are using three different paths, one for each command. But we can just as easily 
have one path because we are using different HTTP verbs for each command anyway. 
Figure 6-137 on page 261 shows the corresponding configuration.

Figure 6-137   Product configuration
Chapter 6. Practical agile integration 261



Each path will have one operation. In the case of the create command, the convention is to 
use HTTP POST as shown in Figure 6-138.

Figure 6-138   POST operation

Some of the key aspects of the POST operation are highlighted in Figure 6-139 on page 262.

Figure 6-139   Key aspects of the POST operation

As shown in Figure 6-139, as part of the API definition you can specify the data type you will 
support. In this case we will continue with JSON as we did with the IBM App Connect 
262 Accelerating Modernization with Agile Integration



implementation (1). Since this is a create command, we have marked the input data as 
mandatory (2). The location of the data is the body of the request (3). The type is the product 
definition that we included before (4). Finally, we also specify the schema for the response 
message. In this case is a simple response, but in a real-life scenario this can be as complex 
as needed (5).

For the update command, the HTTP operation will be a PUT. In some implementations, API 
developers prefer to use PATCH, but usually that depends on the scope of the update, in 
other words, the whole resource or individual fields. In this case we will keep both scenarios 
under PUT, but you can expand the scenario to include PATCH on your own, based on the 
information provided here. 

Our path configuration is as follows. However, in contrast to the create path, we have added 
the partNumber as a parameter, so that we can identify which product we want to update.

Figure 6-140   Path configuration

Because we included the partNumber as part of the path you can see it is included as a new 
parameter for the operation. But it is located in the path instead of the body. See Figure 6-141 
on page 264.
Chapter 6. Practical agile integration 263



The path for the Delete command uses the corresponding HTTP Delete operation to process 
the request as shown in Figure 6-141 on page 264.

Figure 6-141   Path for the Delete command

In the case of the Delete operation, we need only the partNumber to identify the record to 
delete, so the configuration is shown in Example 6-5 on page 267.
264 Accelerating Modernization with Agile Integration



6.5.3  Securing the API

A key benefit of using IBM API Connect to create and manage the API is the fact that you can 
add security to the API. Instead of giving the responsibility to the API developer, you can have 
a central location where you can enforce certain security policies that are applied globally 
regardless of the actual API back end and how it was implemented.

In this case we have added API key validation with Client Id and Client Secret. But APIC 
supports other options, including OAuth, which is a common approach in the API world, and 
is described in a later section. See Figure 6-142 on page 265.

Figure 6-142   Security definitions -1

To enable the security definitions that are specified in 6.5.3, “Securing the API” on page 265, 
you use the Security Tab. There, you have the opportunity to check which definitions that you 
want to use as part of the security policies. In this case we have enabled both. See 
Figure 6-143.
Chapter 6. Practical agile integration 265



Figure 6-143   Security definitions -2

6.5.4  The Assembly

There are other properties that you can set as part of the API definition. But we will leave 
them with the defaults, and we will move to the “brains” of the API. The Assembly is where 
you will define the logic that your API will execute for each operation. It can be as simple as a 
proxy that invokes an existing API implemented already, for instance in IBM App Connect. But 
you can also take advantage of the many functions (known as policies) available in IBM API 
Connect to build an orchestration as complex as needed.

In this case, we are going to use the Operation Switch. It automatically allows you to create a 
case for each of the operations we have configured, with a GatewayScript that includes the 
functionality to interact with IBM MQ directly via the urlopen module. Additional details can be 
found in the APIC v2018 Knowledge Center article titled “urlopen module”:
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.7.0/com.ibm.dp.doc/urlopen_js
.html#urlopen.targetformq

Note that we could have used the new messaging REST API that is available in IBM MQ v9.1, 
and we would not have needed to use any GatewayScript at all. However, we know that not 
all the customers have migrated to this version yet. So we decided to show a more generic 
approach that can be used immediately with previous versions of IBM MQ. If you are 
interested to explore the messaging REST API that is introduced in IBM MQ v9.1, read the 
Knowledge Center article titled “Messaging using the REST API”:
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q13
0940_.htm

With this in mind, the Assembly to implement the API will look like Figure 6-144.
266 Accelerating Modernization with Agile Integration

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q130940_.htm)
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.7.0/com.ibm.dp.doc/urlopen_js.html#urlopen.targetformq
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.7.0/com.ibm.dp.doc/urlopen_js.html#urlopen.targetformq


Figure 6-144   The Assembly to implement the API 

The code details for each one of the gateway scripts are included in Example 6-5 below.

Example 6-5   Code details

DB Create Cmd:
var urlopen = require ('urlopen');
var putData = apim.getvariable('request.body');
var options =
{
    target: 
'mq://XXX.XXX.XXX.XXX:YYYYY?QueueManager=mqicp4i;UserName=user11;Channel=ACE.TO.MQ;ChannelTimeout=3000;'
              + 
'ChannelLimit=2;Size=100000;MQCSPUserId=user11;MQCSPPassword=ZZZZZZZZZZZZ;RequestQueue=DB.CREATE;TimeOut=10
000',
     data : putData,
  headers : { MQMD   : { 
                            MQMD: { 
                                   StructId : { $ : 'MD' } ,
                                    Version : { $ : '1'} ,
                     Format: { $ : "MQSTR"}
                     ,
                                  }
                        } 
              }
};
urlopen.open (options, function (error, response) {} );
apim.setvariable('message.body','{ "statusMsg": "Command to create row was received successfully" }');
DB Update Cmd:
var urlopen = require ('urlopen');
var putData = apim.getvariable('request.body');
putData.partNumber = apim.getvariable('request.parameters.partNumber');
var options =
{
    target: 'mq:// 
XXX.XXX.XXX.XXX:YYYYY?QueueManager=mqicp4i;UserName=user11;Channel=ACE.TO.MQ;ChannelTimeout=3000;'
Chapter 6. Practical agile integration 267



              + 'ChannelLimit=2;Size=100000;MQCSPUserId=user11;MQCSPPassword= 
ZZZZZZZZZZZZ;RequestQueue=DB.UPDATE;TimeOut=10000',
     data : putData,
  headers : { MQMD   : { 
                            MQMD: { 
                                   StructId : { $ : 'MD' } ,
                                    Version : { $ : '1'} ,
                     Format: { $ : "MQSTR"}
                     ,
                                  }
                        } 
              }
};
urlopen.open (options, function (error, response) {} );
apim.setvariable('message.body','{ "statusMsg": "Command to update row was received successfully" }');
DB Delete Cmd:
var urlopen = require ('urlopen');
var putData = apim.getvariable('request.parameters');
var options =
{
    target: 'mq:// 
XXX.XXX.XXX.XXX:YYYYY?QueueManager=mqicp4i;UserName=user11;Channel=ACE.TO.MQ;ChannelTimeout=3000;'
              + 'ChannelLimit=2;Size=100000;MQCSPUserId=user11;MQCSPPassword= 
ZZZZZZZZZZZZ;RequestQueue=DB.DELETE;TimeOut=10000',
     data : putData,
  headers : { MQMD   : { 
                            MQMD: { 
                                   StructId : { $ : 'MD' } ,
                                    Version : { $ : '1'} ,
                     Format: { $ : "MQSTR"}
                     ,
                                  }
                        } 
              }
};
urlopen.open (options, function (error, response) {} );
apim.setvariable('message.body','{ "statusMsg": "Command to delete row was received successfully" }');

6.5.5  API testing

After we are satisfied with the API we can test it right there in the Assembly which provides 
productivity benefits for the API Developer. 

1. To enter in test mode, you click Play in the assembly diagram.

This will open the Test section where you will have the opportunity to Republish the 
Product in case you have made any update recently. You might notice that the user 
interface refers to Product and not API. A Product is an artifact that allows you to package 
many products to help manage multiple APIs where you can define rate limits among 
other things. See Figure 6-145.
268 Accelerating Modernization with Agile Integration



Figure 6-145   API testing -1

2. After you have republished the product if needed, you can select the operation you want to 
test. Let’s start creating a new product. See Figure 6-146.

Figure 6-146   API testing -2

3. After that a new section is opened where you are required to enter the security information 
we defined before. See Figure 6-147 on page 269.

Figure 6-147   API testing -3
Chapter 6. Practical agile integration 269



In this case, the tool creates test credentials to simplify the process. But when this is 
promoted to another tiers, the App Developers are required to obtain their own API Keys. 

4. When you continue scrolling down, you will be able to enter the parameters required to 
invoke the API. The tool allows you to generate test data. If you prefer, you can type or 
copy and paste some sample test data, you might have already available. See 
Figure 6-148.

Figure 6-148   API testing -4

5. After you have entered all the information you can invoke the API, and you have the 
opportunity to repeat the invocation multiple times if needed. See Figure 6-149 on 
page 270.

Figure 6-149   API testing -5

6. After a moment the result of the API invocation is returned, where you can see the status 
code and the body of the response message. In this case we can see a successful 
invocation (200) as well as the response message we defined in the gatewayscript code. 
See Figure 6-150.
270 Accelerating Modernization with Agile Integration



Figure 6-150   API testing -6

6.5.6  API socialization

At this point your API is ready to be consumed by App Developers. The App Developers will 
use another component of the APIC platform knows as the Developer Portal where they can 
search for available APIs, get all the required information to invoke the API, register the App 
that will be used to consume the API and request the API keys associated with the App. 

For simplicity here you have a screen capture of the Developer Portal (Figure 6-151).
Chapter 6. Practical agile integration 271



Figure 6-151   Developer Portal 

1. Searching the catalog, we can find the API that we have defined. It is associated to an 
“auto” product because we leverage the automatic publication. But if needed we could 
create a different product to control and configure all the aspects of the product. 

2. If you click on the API name, you see the API details in Figure 6-152.

Figure 6-152   APIFacade 1.0.0

Figure 6-153 on page 273 shows the API details.
272 Accelerating Modernization with Agile Integration



Figure 6-153   APIFacade overview

3. As shown in Figure 6-153:

You will find the three operations we defined for the API (1). It also includes the 
information about the data models used by the API (2). 

You have the opportunity to download the OpenAPI document for the API to use it when 
developing the App that will consume this API (3).

The API includes information about the actual endpoint that you will need to use to invoke 
the API (4). It also includes the security information (5), so the App Developer is aware 
right away of the security requirements associated with the API.

4. If you select the Definitions, you get the details about the data models as shown in 
Figure 6-154 on page 274. This is why you should include as much information as 
possible at the time of the API creation to serve as documentation. Consider including the 
JSON schema and also an example.
Chapter 6. Practical agile integration 273



Figure 6-154   Definitions

5. When you select an operation you are presented with the corresponding details, and you 
can even try it directly from the portal to improve the App Developer productivity. See 
Figure 6-155.

Figure 6-155   Try it

6. When you continue scrolling down you will find the rest of the information about the 
parameters. Almost at the bottom, you will find code snippets in many languages, 
274 Accelerating Modernization with Agile Integration



including Java, Node, and Swift among others, helping the App Developer to accelerate 
the development process. See Figure 6-156 on page 275.

Figure 6-156   Example request

7. When you explore the Try It tab you see the screen to invoke the API. The whole process 
has been documented in a different section of this document. But let’s give special 
attention to the message that states, “Log in to try this API”, which is a key security aspect 
of APIC. 

The goal is that anyone could easily find all the APIs that you have created. But in case 
they want to actually try it, they will need to sign in to the Portal. And in case they do not 
have an account, they can create one with the self-service capabilities. It is important to 
mention that all these capabilities are configurable. As a result, you can make the APIs 
visible to everybody to enable the self-service functionality and everything in between. 
See Figure 6-157 on page 276.
Chapter 6. Practical agile integration 275



Figure 6-157   Sign in

6.5.7  Conclusion

In this section we have demonstrated how you can extend the Command side of the 
Command Query Responsibility Segregation (CQRS) pattern to expose the functionality as 
an API. In this way, you remove the IBM MQ dependency from the client side. But you 
continue to have the benefits that IBM MQ provides, plus all the API Management capabilities 
provided by APIC, including API security enforcement and API socialization among others.

6.6  Advanced API security

API management has enabled us to effectively hide the implementation from consumers. 
They see the implementation as a black box component with only one way in, via the API 
gateway as shown in Figure 6-158 on page 277.
276 Accelerating Modernization with Agile Integration



Figure 6-158   OAuth-based API security

We can now choose from a range of options to add sophistication to how we secure access to 
the API. In this section we will enable OAuth to control access.

IBM API Connect supported by DataPower provides advanced security features, which 
include but are not limited to, OAuth, JWT, encryption, throttling, etc. As described in section 
4.9, “Cloud-native security – an application-centric perspective” on page 128 we can cover 
many different use cases.

We will demonstrate how to secure your API with OAuth token. We will also discuss the JWT 
token generation.

First you must identify which scheme you want your flow to follow. For more information, see 
the following article:
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.toolkit.d
oc/tutorial_apionprem_security_OAuth.html 

To choose an OAuth scheme. You must first establish whether your implementation is 
considered public or confidential. This will narrow your choices to three schemes. A brief 
outline of each scheme and the characteristics of the three public and three confidential 
schemes follows.

In our example here, we will use a Confidential (For internal application) scheme with 
password flow to demonstrate how to secure the API.

A confidential scheme is suitable when an application is capable of maintaining the secrecy of 
the client secret. This is usually the case when an application runs in a browser and accesses 
its own server when it gets OAuth access tokens. As such, these schemes make use of the 
client secret.

In Figure 6-159 we are showing the overall scenario, in which the developer initiates the 
request using one of the available channels (mobile, web), then the application uses the 
confidential scheme to obtain the token from the gateway. Then if authorized, the application 
calls the back-end microservice to get the data.

Logical component

API Management (APIC)

Consolidated, secured 
API

OAuth  Provider
Chapter 6. Practical agile integration 277

https://www.ibm.com/support/knowledgecenter/en/SSFS6T/com.ibm.apic.toolkit.doc/tutorial_apionprem_security_OAuth.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.toolkit.doc/tutorial_apionprem_security_OAuth.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.toolkit.doc/tutorial_apionprem_security_OAuth.html


Figure 6-159 is an overview of the full scenario for this use case.

Figure 6-159   Scenario overview

6.6.1  Import the API into IBM API Connect

We described this procedure in the preceding section 6.3.1, “Importing the API definition” on 
page 191.

6.6.2  Configure the API

We described this procedure in the preceding section 6.3.2, “Configuring the API” on 
page 196.

6.6.3  Add basic security to the API

We described this procedure in the preceding section 6.3.4, “Add simple security to the API” 
on page 202.

6.6.4  Test the API

We described this procedure in the preceding section “Test the product” on page 205.

6.6.5  Securing the API Using OAUTH

Securing the API with OAUTH is divided into two parts, first the user repository and second 
the token issuer. They each could be using different systems or could be within the same 
platform.

API 
Gateway 
Powered by IBM 

DataPower

Microservice
Database Operations

Identity 
Provider

LDAP
OAUTH
OIDC

Microservice
Database Query
278 Accelerating Modernization with Agile Integration



In this demo we are going to utilize and create a DataPower Basic Authentication service that 
is using the DataPower Information file. Figure 6-160 on page 279 shows our scenario.

Figure 6-160   Our scenario

Importing the DataPower Auth URL
Perform the following steps to import the configuration into IBM DataPower that will enable it 
to offer a basic authentication service over a URL.

1. Import the following XML Firewall to IBM DataPower.

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-I
ntegration/blob/master/chapter6/IBMRedBookDPAuth.zip.

To do that, Log in to the IBM DataPower interface, then click Import Configurations.
Chapter 6. Practical agile integration 279



Figure 6-161   DataPower OAUTH URL Import 1

2. Browse for the downloaded file then click Next → Select all → Import →Close.

For step-by-step details, refer to 6.7, “Create event stream from messaging” on page 322.

API Connect OAUTH configurations
Back in IBM API Connect, we want to configure our API to use OAUTH. First it will need a 
user registry. We will use the DataPower service that were created in the previous step.

The user registry can be any type of user registry like an LDAP based registry, Auth URL or 
the local registry of the platform.

Create user registry
Perform the following steps in IBM API Connect:

1. Click on Resources → User Registries and then click on Create. See Figure 6-162.
280 Accelerating Modernization with Agile Integration



Figure 6-162   Creating user registry 1

2. You will have three options

– Authentication URL User Registry (This is our option with DataPower Auth Service)

– LDAP User Registry

– Local User Registry

Choose Authentication URL User Registry and click Next. See Figure 6-163 on 
page 281.

Figure 6-163   Creating user registry 2

3. Type in:

– Title: RedbookOAUTHRegistry

– URL: DataPower Authentication URL

Click Save. See Figure 6-164.
Chapter 6. Practical agile integration 281



Figure 6-164   Creating user registry 3

Create OAuth Provider
IBM API Connect provides a native OAUTH provider. Perform the following steps to create an 
OAUTH provider:

1. Under Resources, click on OAuth Providers, then click on Add and choose Native 
OAuth provider. See Figure 6-165.

Figure 6-165   Creating user registry 4

2. Fill up the title RedbookOAUTHProvider and use DataPower V5 then click Next. See 
Figure 6-166 on page 283.
282 Accelerating Modernization with Agile Integration



Figure 6-166   Creating user registry 5

3. There are different options for the supported grant types:

– Implicit: An access token is returned immediately without an extra authorization code 
exchange step.

– Application: Application to application. Corresponds to the OAuth grant type “Client 
Credentials.” Does not require User Security.

– Access code: An authorization code is extracted from a URL and exchanged for an 
access code. Corresponds to the OAuth grant type “Authorization Code.”

– Resource owner password: The user’s username and password are exchanged 
directly for an access token, so can be used only by first-party clients.

Choose Resource owner - Password to exchange the basic authentication credentials 
with the server to get the token. We are choosing this because we want capture to the 
username and password to obtain the OAUTH token.

Then click Next. See Figure 6-167 on page 284.
Chapter 6. Practical agile integration 283



Figure 6-167   Creating user registry 6

4. Define the scopes that you want to use for your API, this cloud be the base path of your 
API, in this case it will be database_operations then click Next. See Figure 6-168.

Figure 6-168   Creating user registry 7

5. Choose the following options:

– Collect credentials using: Basic Authentication

– Authenticate application users using: RedbookOAUTHRegistry

– Authorize application users using: Authenticated

Then click Next. See Figure 6-169 on page 285.
284 Accelerating Modernization with Agile Integration



Figure 6-169   Creating user registry 8

6. An option to create a sample user registry will be available if you do not have any 
configured user registry. See Figure 6-170.

Figure 6-170   Creating user registry 9

7. Click Finish. See Figure 6-171 on page 286.

Tip: If you didn’t create the registry in the previous step, you can simply click Create 
Sample User Registry.
Chapter 6. Practical agile integration 285



Figure 6-171   Creating user registry 10

Next, we must add the OAuth Provider to the gateway catalog and the API that we need to 
secure.

Adding the OAuth Provider to the gateway catalog
Perform the following steps:

1. From the left side menu click Manage and choose Sandbox. See Figure 6-172.

Figure 6-172   Adding the OAuth provider to the gateway 1
286 Accelerating Modernization with Agile Integration



2. Again (inside the Sandbox Page) from the left side menu click on Settings. See 
Figure 6-173 on page 287.

Figure 6-173   Adding the OAuth provider to the gateway 2

3. Click API User Registries then click Edit. See Figure 6-174.

Figure 6-174   Adding the OAuth provider to the gateway 3

4. Check the RedbookOAUTHProvider and click Save. See Figure 6-175.

Tip: You must be inside the Sandbox page to see the Catalog Settings.
Chapter 6. Practical agile integration 287



Figure 6-175   Adding the OAuth provider to the gateway 4

Adding the OAuth definition to the API
Perform the following steps:

1. From the left side menu, click on Develop, then choose the API you want to secure. See 
Figure 6-176.

Figure 6-176   Adding the OAuth provider to the gateway 1

2. Click Security Definitions then click Add. See Figure 6-177.
288 Accelerating Modernization with Agile Integration



Figure 6-177   Adding the OAuth provider to the gateway 2

3. Fill in the following values:

– Name: oauth01

– Type: OAuth2

– OAuth Provider: RedbookOAUTHProvider

– Scopes: database_operations 

Then click Save. See Figure 6-178.

Figure 6-178   Adding the OAuth provider to the gateway 3

4. Next, click Security and check the oauth01 and the scope database_operations then 
click on Save. See Figure 6-179.
Chapter 6. Practical agile integration 289



Figure 6-179   Adding the OAuth provider to the gateway 4

API discovery and testing
Now you can publish the API for testing. Follow the steps in “Publish the product” on page 204 
for publishing the product.

You have three ways of testing the APIs:

� Using the Automated Application Subscriptions in the API Manager (Discussed in “Publish 
the product” on page 204)

� Using the Developer Portal Application Subscriptions 

� Using and external REST tool like Postman client

First let’s go through the Developer Portal application subscriptions. 

1. You must register in the Developer Portal. To do that, click Create account, then fill in 
your information and finally click Sign Up. See Figure 6-180 on page 291.
290 Accelerating Modernization with Agile Integration



Figure 6-180   API Discovery and testing 1

2. Upon a successful registration, you receive a success message indicating that you will 
receive an email with the activation link as shown in Figure 6-181.
Chapter 6. Practical agile integration 291



Figure 6-181   API Discovery and testing 2

3. Click the link in the received email. See Figure 6-182.

auto

Figure 6-182   API Discovery and testing 3

Now you should see the message indicating that your account has been activated. See 
Figure 6-183.
292 Accelerating Modernization with Agile Integration



Figure 6-183   API Discovery and testing 4

4. After activating your account click Sign in. See Figure 6-184.

Figure 6-184   API Discovery and testing 5

5. Provide a username and password as shown in Figure 6-185.

Figure 6-185   API Discovery and testing 6
Chapter 6. Practical agile integration 293



6. Now you can see that you are logged in to the created organization during the registration 
process. See Figure 6-186.

Figure 6-186   API Discovery and testing 7

7. Click Apps then click Create new app. See Figure 6-187.

Figure 6-187   API Discovery and testing 8

8. Now fill in as shown here:

– Title: RedbookTestApp

– Description: IBM Redbooks Testing Application

– Application OAuth Redirect URL(s): http://www.oauth.com/redirect

Then click Submit. See Figure 6-188.

Figure 6-188   API Discovery and testing 9
294 Accelerating Modernization with Agile Integration



9. Next page (Figure 6-189) will show the Key and Secret. Note that the secret is viewed only 
once. Therefore, you must copy it and keep it for your records. 

Figure 6-189   API Discovery and testing 10

10.Now choose the RedbookTestApp from the Apps menu. See Figure 6-190.

Figure 6-190   API Discovery and testing 11

11.You can add picture of your application from the application options Upload image. See 
Figure 6-191.
Chapter 6. Practical agile integration 295



Figure 6-191   API Discovery and testing 12

12.Browse for the required picture then click Submit. See Figure 6-192 on page 296.

Figure 6-192   API Discovery and testing 13

Now you can see the newly uploaded application image in Figure 6-193.

Figure 6-193   API Discovery and testing 14

Subscribing to products
Perform the following steps for subscribing to products:

1. Click Subscriptions then click Why not browse the available APIs? See Figure 6-194 
on page 297.
296 Accelerating Modernization with Agile Integration



Figure 6-194   Product subscriptions 1

2. Choose the published product for database_operations. See Figure 6-195.

Figure 6-195   Product subscriptions 2

3. Click Subscribe. See Figure 6-196 on page 298.
Chapter 6. Practical agile integration 297



Figure 6-196   Product subscriptions 3

4. Select RedbookTestApp. See Figure 6-197.

Figure 6-197   Product subscriptions 4

5. Click Next. See Figure 6-198 on page 299.
298 Accelerating Modernization with Agile Integration



Figure 6-198   Product subscriptions 5

6. Click Done. See Figure 6-199.

Figure 6-199   Product subscriptions 6

7. To test the api, click the product link under the product page. See Figure 6-200 on 
page 300.
Chapter 6. Practical agile integration 299



Figure 6-200   Product subscriptions 7

This will take you to the product explorer where you will be able to try the api. Under 
details, you can see all the api related operations and artifacts.

8. Choose GET /products then click Try it. See Figure 6-201.

Figure 6-201   Product subscriptions 8

9. Fill in the following options:

– Client ID: choose the created application

– Client Secret: use the application client secret that was shown in the previous step

– Username (DataPower Auth): BookUser

– Password: BookUser
300 Accelerating Modernization with Agile Integration



– Scopes: check database_operations

Then click Get Token. See Figure 6-202.

Figure 6-202   Product subscriptions 9

10.Scroll down the page then click Send. You receive the response 200 OK from the back 
end. See Figure 6-203 on page 302.
Chapter 6. Practical agile integration 301



Figure 6-203   Product subscriptions 10

11.Providing a wrong credentials will result in an Invalid grant message as shown in 
Figure 6-204 on page 303.
302 Accelerating Modernization with Agile Integration



Figure 6-204   Product subscriptions 11

6.6.6  External client testing

If you wonder how to test it from Postman, first, you must obtain the token, then you can call 
the API. 

To get the OAuth token url you can:

1. Get the Sandbox URL from Sandbox → Settings → API Endpoints as shown in 
Figure 6-205.
Chapter 6. Practical agile integration 303



Figure 6-205   API external client testing 1

2. Get the OAuth URI base path from Resources → OAuth Providers → 
RedbookOAuthProvider → Info. See Figure 6-206.

Figure 6-206   API external client testing 2
304 Accelerating Modernization with Agile Integration



3. Get the Token path from Resources → OAuth Providers → RedbookOAuthProvider → 
Configuration. See Figure 6-207.

Figure 6-207   API external client testing 2

4. You must provide:

– grant_type: password

– client_id: your subscribed application id

– client_secret: your subscribed application secret

– scope: the OAuth scope defined in the oauth provider and the API

– username: (DataPower Auth URL username)

– password: (DataPower Auth URL password)

The response should contain the token in the response body. You can find the details in 
Figure 6-208.
Chapter 6. Practical agile integration 305



Figure 6-208   API external client testing 3

5. If you provided the wrong username or password you receive a 401 Unauthorized 
“invalid_grant” response. Refer to Figure 6-209 on page 306.

Figure 6-209   API external client testing 4

6. Next, use the API URL to test it, you must provide,

� X-IBM-Client-Id

� X-IBM-Client-Secret

� Authorization (Type as Bearer)

The response is 200 OK, and you should receive the same response that you received in 
the developer portal. See Figure 6-210 on page 307.
306 Accelerating Modernization with Agile Integration



Figure 6-210   API external client testing 5

7. Providing wrong credentials will result in 401 Unauthorized response. See Figure 6-211.

Figure 6-211   API external client testing 6

Creating the DataPower Auth URL *Optional* (Step-by-Step)
To simplify the tutorial, and to show some of the IBM DataPower capabilities, we are going to 
create an Auth URL. This URL could be changed to any public Auth URL.

You can use an AAA information file in the following processing phases of an AAA policy: 
authentication, credential mapping, resource mapping, and authorization. For more 
information see the example XML file here:
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Inte
gration/blob/master/chapter6/AAAInfoFile.xml.

Perform the following to create the DataPower Auth URL:

1. Open the DataPower interface and go to: Services → XML Firewall → New. See 
Figure 6-212.
Chapter 6. Practical agile integration 307

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/AAAInfoFile.xml
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/AAAInfoFile.xml


Figure 6-212   Configuring the DataPower XML firewall 1

Change the properties to: 

– Firewall name: RedbookAuth

– Firewall Type: Loopback

– Request Type: JSON

– Port: You can leave it as default or change it to your preference

2. Then click on the plus sign (+) next to Processing Policy. See Figure 6-213.
308 Accelerating Modernization with Agile Integration



Figure 6-213   Configuring the DataPower XML firewall 2

3. Enter the policy name and choose Client to Server then click on New Rule. See 
Figure 6-214.

Figure 6-214   Configuring the DataPower XML firewall 3

4. Double click on highlighted (=) to configure it as shown in Figure 6-215.
Chapter 6. Practical agile integration 309



Figure 6-215   Configuring the DataPower XML firewall 3

5. Click on the (+) next to Matching Rule. See Figure 6-216.

Figure 6-216   Configuring the DataPower XML firewall 5

6. Change the name to MatchAll then click on Add under Rules. See Figure 6-217 on 
page 311.
310 Accelerating Modernization with Agile Integration



Figure 6-217   Configuring the DataPower XML firewall 6

7. Choose the Matching type to be URL and in the value use *, click on Apply then Done. 
See Figure 6-218.

Figure 6-218   Configuring the DataPower XML firewall 7
Chapter 6. Practical agile integration 311



8. Now drag the AAA policy to the flow and double click on it to configure it. See 
Figure 6-219.

Figure 6-219   Configuring the DataPower XML firewall 8

9. Click + next to the AAA policy as shown in Figure 6-220.

Figure 6-220   Configuring the DataPower XML firewall 9
312 Accelerating Modernization with Agile Integration



10.Now type RedbookPolicy in the name and click Create. See Figure 6-221 on page 313.

Figure 6-221   Configuring the DataPower XML firewall 10

11.Choose HTTP Authentication Header and click Next. See Figure 6-222.

Figure 6-222   Configuring the DataPower XML firewall 11

12.Choose Use AAA Information File and click Upload. Use the sample file 
AAAInfoFile.xml from this web page:
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-I
ntegration/blob/master/chapter6/AAAInfoFile.xml. 
Click Next. See Figure 6-223 on page 314.

Note: The file contains different usernames and passwords. You can use the first one, 
which is BookUser/BookUser.
Chapter 6. Practical agile integration 313

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/AAAInfoFile.xml
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/AAAInfoFile.xml


Figure 6-223   Configuring the DataPower XML firewall 12

13.Choose Local name of request element (this will extract the required domain for 
authorization), then click Next. See Figure 6-224.

Figure 6-224   Configuring the DataPower XML firewall 13

14.Choose Allow any authenticated client then click Next. See Figure 6-225 on page 315.
314 Accelerating Modernization with Agile Integration



Figure 6-225   Configuring the DataPower XML firewall 14

15.Now you can see many different options of monitoring, logging, and post-processing 
features. Go with the default and click on Commit as shown in Figure 6-226 on page 316.
Chapter 6. Practical agile integration 315



Figure 6-226   Configuring the DataPower XML firewall 15

16.Click on Done. See Figure 6-227 on page 317.
316 Accelerating Modernization with Agile Integration



Figure 6-227   Configuring the DataPower XML firewall 16

17.Now drag the transformation node to the flow and double-click it to configure it. See 
Figure 6-228.

This step is to create a custom response for the authentication.

Figure 6-228   Configuring the DataPower XML firewall 17
Chapter 6. Practical agile integration 317



18.Click on Upload and use the file DataPowerAuthResponse.xslt from this web page:
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-I
ntegration/blob/master/chapter6/DataPowerAuthResponse.xslt
Then click Done. See Figure 6-229.

Figure 6-229   Configuring the DataPower XML firewall 18

19.Finally, drag the result node to the end of the flow. See Figure 6-230 on page 319.
318 Accelerating Modernization with Agile Integration

https://github.ibm.com/claudio-tag/icp4i-redbook/blob/master/chapter6/DataPowerAuthResponse.xslt
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/DataPowerAuthResponse.xslt
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration/blob/master/chapter6/DataPowerAuthResponse.xslt


Figure 6-230   Configuring the DataPower XML firewall 19

20.Click Apply Policy then Close the window. See Figure 6-231.

Figure 6-231   Configuring the DataPower XML firewall 20

21.Click Apply again on the main XML Firewall then click Save Changes. See Figure 6-232 
on page 320.
Chapter 6. Practical agile integration 319



Figure 6-232   Configuring the DataPower XML firewall 21

22.Click Advanced and set:

– Disallow GET (and HEAD) to off

– Process Messages Whose Body Is Empty to on

Then click Apply as shown in Figure 6-233 on page 321.
320 Accelerating Modernization with Agile Integration



Figure 6-233   Configuring the DataPower XML firewall 22

23.To test that the Authentication URL is working, use the DataPower IP and the XML 
Firewall Port in the browser. You should be prompted to enter the username and 
password. Type the username and password BookUser/BookUser.

Figure 6-234   Configuring the DataPower XML firewall 23

24.When you click on Sign In, you should receive the SOAP response as shown in 
Figure 6-235 on page 322.
Chapter 6. Practical agile integration 321



Figure 6-235   Configuring the DataPower XML firewall 24

Now you have a working authentication URL in the DataPower.

6.7  Create event stream from messaging

APIs have emerged as the simplest way to make data and functions accessible from 
back-end systems, and their role will remain fundamental to integration for some time to 
come. However, most modern applications have a need to respond to events as they happen, 
in real time. 

An API is a "pull" pattern whereby the consumer knows only the state of the back-end system 
when they choose to pull state from it via the API. As such, it may be some time before a 
consumer becomes aware a change has occurred. We could of course "poll" the API at 
intervals to check the state of the back-end system. But the more regularly we poll, the less 
efficient from a resource point of view this pattern becomes. 

Imagine the mobile banking applications of all customers regularly polling the bank to check 
the balance in order to check whether the customer has gone into overdraft. It would 
obviously be better to simply be only notified each time the balance changed, or better still 
only when an overdraft occurred. Therefore, we also need a mechanism to "push" 
notifications from the back-end systems up to the consumer applications. 

These real time notifications of events are just one example of where a "push" model is a 
common requirement. We consider another example later in 6.10, “Implement event sourced 
APIs” on page 367. 

Clearly, passing messages asynchronously isn't in any way new. IBM MQ was invented for 
this very purpose over 25 years ago, and indeed we could easily use IBM MQ for this 
purpose. Indeed, we demonstrate IBM MQ as a source of events to a cloud integration in 6.8, 
“Perform event-driven SaaS integration ” on page 328. However, modern applications come 
with a subtly different set of requirements. Their requirements might be better suited to an 
alternative form of asynchronous communication known as "event streams", and typified by 
Apache Kafka, on which IBM Event Streams is built. 

We have already discussed in detail the differences between traditional messaging such as 
IBM MQ, and event streaming technologies such as Kafka in 3.3, “Capability perspective: 
Messaging and event streams” on page 68 so we need not repeat that here. Suffice to say 
there is definitely a place for both in a solution, and indeed they can often be used alongside 
one another in a complementary fashion. 

There are many different ways to create an event stream from a back-end system. In this 
section we are going to take advantage of the fact that in many organizations, a substantial 
IBM MQ infrastructure is already in place. For them, the simplest way to create an event 
322 Accelerating Modernization with Agile Integration



stream may well be to simply listen for IBM MQ messages and publish their payload to an 
event stream (as shown in option a, in Figure 6-236 on page 323). 

Figure 6-236   Create event stream from messaging 

Option a) fits neatly into our existing scenario as we already have an IBM MQ queue that 
receives all data change events (creates, updates, deletes) and that's what we implement in 
this section. 

However, it is worth noting that there will be circumstances where an input queue might not 
contain all the events that occur in the database. For example, imagine if we had left in place 
the original synchronous mechanism for performing database changes alongside the new 
IBM MQ based asynchronous one. Perhaps older consumers were unwilling to change to the 
new interaction pattern. Or perhaps they required the synchronous interaction so that they 
could confirm that an update had been completed. In this case, the messages on the IBM MQ 
queue would represent only a subset of the actual data changes that occur in the database. 
In these situations we would need to capture the data changes at source using one of the 
database replication capabilities available. Examples for Db2 are here:

https://www.ibm.com/support/knowledgecenter/en/SSTRGZ_11.4.0/com.ibm.idr.frontend.
doc/pv_welcome.html?cp=SSEPGG_11.5.0

Let’s return to our example, where there is an IBM MQ topic that we can use to publish events 
to IBM Event Streams (IBM's Kafka implementation). We are going to assume that the IBM 
MQ topic already exists. That way, we can focus on how to create a new subscriber to the 
existing IBM MQ topic, then leveraging the Kafka Connect source connector for IBM MQ.

Logical component boundary

(ES)

(MQ)

Create
Update
Delete
(AC-IS)

”Product”
API

option a)
(MQ Kafka connector)

PRODUCTS
Datastore

(DB2)

option b) 
(CDC)

“Product Change” 
Event Stream

Search
&

Read
(AC-IS)

API Management (APIC)

IBM App Connect
(Integration Server runtime)(AC-IS)

(DB2) IBM DB2 database

(APIC) IBM API Connect

(MQ)
IBM MQ 
(Queue Manager component)

(ES) IBM Event Streams
Chapter 6. Practical agile integration 323

https://www.ibm.com/support/knowledgecenter/en/SSTRGZ_11.4.0/com.ibm.idr.frontend.doc/pv_welcome.html?cp=SSEPGG_11.5.0


6.7.1  Creating a new event stream topic

First, we create a new topic in IBM Event Streams:

1. Begin by logging in to your instance of Event Streams.

2. Next, create a topic as shown in Figure 6-237 on page 324.

Figure 6-237   Create a topic

3. Specify a name, the number of partitions message retention and replicas that are 
necessary or your use case and volumes.

4. Then click the Connect to this cluster button as shown in Figure 6-238.

Figure 6-238   Click Connect to this cluster button

5.Save the API Key for later use.

6.7.2  Running the IBM MQ source connector

You can use the IBM MQ source connector to copy data from IBM MQ into IBM Event 
Streams or Apache Kafka. The connector copies messages from a source IBM MQ queue to 
a target Kafka topic.

Kafka Connect can be run in stand-alone or distributed mode. We cover steps for running the 
connector in distributed mode in a Docker container. In this mode, work balancing is 
automatic, scaling is dynamic, and tasks and data are fault-tolerant. For more details on the 
difference between stand-alone and distributed mode, see the explanation of Kafka Connect 
workers.
324 Accelerating Modernization with Agile Integration



Prerequisites
The connector runs inside the Kafka Connect runtime, which is part of the Apache Kafka 
distribution. IBM Event Streams does not run connectors as part of its deployment, so you 
need an Apache Kafka distribution to get the Kafka Connect runtime environment.

Ensure you have IBM MQ v8 or later installed. 

Setting up the queue manager
These instructions set up an IBM MQ queue manager that uses its local operating system to 
authenticate the user ID and password. The user ID and password you provide must already 
be created on the operating system where IBM MQ is running.

1. Log in as a user authorized to administer IBM MQ, and ensure that the IBM MQ 
commands are on the path.

2. Create a queue manager with a TCP/IP listener on port 1414: crtmqm -p 1414 
<queue_manager_name> 

For example to create a queue manager called QM1 use crtmqm -p 1414 QM1.

3. Start the queue manager: strmqm <queue_manager_name>

4. Start the runmqsc tool to configure the queue manager: runmqsc <queue_manager_name>

5. In runmqsc, create a server-connection channel: DEFINE CHANNEL(<channel_name>) 
CHLTYPE(SVRCONN)

6. Set the channel authentication rules to accept connections that require a userid and 
password:

a. SET CHLAUTH(<channel_name>) TYPE(BLOCKUSER) USERLIST('nobody')

b. SET CHLAUTH('*') TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(NOACCESS)

c. SET CHLAUTH(<channel_name>) TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(CHANNEL) 
CHCKCLNT(REQUIRED)

7. Set the identity of the client connections based on the supplied context (the user ID): 
ALTER AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) AUTHTYPE(IDPWOS) ADOPTCTX(YES)

8. Refresh the connection authentication information: REFRESH SECURITY TYPE(CONNAUTH)

9. Create a queue for the Kafka Connect connector to use: DEFINE QLOCAL(<queue_name>)

10.Authorize the IBM MQ user ID to connect to and inquire the queue manager: SET AUTHREC 
OBJTYPE(QMGR) PRINCIPAL('<user_id>') AUTHADD(CONNECT,INQ)

11.Authorize the IBM MQ user ID to use the queue: SET AUTHREC PROFILE(<queue_name>) 
OBJTYPE(QUEUE) PRINCIPAL('<user_id>') AUTHADD(ALLMQI)

12.Stop the runmqsc tool by typing END.

For example, for a queue manager who is called QM1, with user ID alice, creating a 
server-connection channel called MYSVRCONN and a queue called MYQSOURCE, you run 
the following commands in runmqsc (Example 6-6):

Example 6-6   Sample commands

DEFINE CHANNEL(MYSVRCONN) CHLTYPE(SVRCONN)
SET CHLAUTH(MYSVRCONN) TYPE(BLOCKUSER) USERLIST('nobody')
SET CHLAUTH('*') TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(NOACCESS)

Note: These instructions are for IBM MQ v9 running on Linux. If you’re using a different 
version or platform, you might have to adjust some steps slightly.
Chapter 6. Practical agile integration 325



SET CHLAUTH(MYSVRCONN) TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(CHANNEL) 
CHCKCLNT(REQUIRED)
ALTER AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) AUTHTYPE(IDPWOS) ADOPTCTX(YES)
REFRESH SECURITY TYPE(CONNAUTH)
DEFINE QLOCAL(MYQSOURCE)
SET AUTHREC OBJTYPE(QMGR) PRINCIPAL('alice') AUTHADD(CONNECT,INQ)
SET AUTHREC PROFILE(MYQSOURCE) OBJTYPE(QUEUE) PRINCIPAL('alice') AUTHADD(ALLMQI)
END

The queue manager is now ready to accept connection from the connector and get messages 
from a queue.

6.7.3  Configuring the connector to connect to IBM MQ

The connector requires details to connect to IBM MQ and to your IBM Event Streams or 
Apache Kafka cluster. You can generate the sample connector configuration file for Event 
Streams from either the UI or the CLI. For distributed mode, the configuration is in JSON 
format and in stand-alone mode it is a .properties file.

The connector connects to IBM MQ using a client connection. You must provide the following 
connection information for your queue manager:

� The name of the IBM MQ queue manager.

� The connection name (one or more host and port pairs).

� The channel name.

� The name of the source IBM MQ queue.

� The user name and password if the queue manager is configured to require them for client 
connections.

� The name of the target Kafka topic.

Using the UI

Use the UI to download a .json file that can be used in distributed mode.

1. Log in to your IBM Event Streams UI.

2. Click the Toolbox tab and scroll to the Connectors section.

3. Go to the Connecting to IBM MQ? tile, and click Add connectors.

4. Click the IBM MQ connectors link.

5. Ensure that the MQ Source tab is selected and click Download MQ Source 
Configuration. Another window is displayed.

6. Use the relevant fields to alter the configuration of the MQ Source connector.

7. Click Download to generate and download the configuration file with the supplied fields.

8. Open the downloaded configuration file and change the values of mq.user.name and 
mq.password to the username and password that you used to configure your instance of 
IBM MQ.

Note: The following instructions relate to IBM Cloud Private as that was what was available 
at the time of writing. For OpenShift the concepts will be largely the same. 
326 Accelerating Modernization with Agile Integration



Using the CLI
Use the CLI to download a .json or .properties file that can be used in distributed or 
stand-alone mode.

1. Log in to your cluster as an administrator by using the IBM Cloud Private CLI:

    cloudctl login -a https://<Cluster Master Host>:<Cluster Master API Port>

The master host and port for your cluster are set during the installation of IBM Cloud 
Private.

2. Run the following command to initialize the Event Streams CLI on the cluster:

    cloudctl es init

3. Run the connector-config-mq-source command to generate the configuration file for the 
MQ Source connector.

For example, to generate a configuration file for an instance of IBM MQ with the following 
information: a queue manager called QM1, with a connection point of localhost(1414), a 
channel name of MYSVRCONN, a queue of MYQSOURCE and connecting to the topic 
TSOURCE, run the following command:

cloudctl es connector-config-mq-source --mq-queue-manager="QM1" 
--mq-connection-name-list="localhost(1414)" --mq-channel="MYSVRCONN" 
--mq-queue="MYQSOURCE" --topic="TSOURCE" --file="mq-source" --json

4. Change the values of mq.user.name and mq.password to the username and password 
that you used to configure your instance of IBM MQ.

The final configuration file will resemble what you see in Example 6-7.

Example 6-7   Final configuration file

{
"name": "mq-source",
"config": {

"connector.class": 
"com.ibm.eventstreams.connect.mqsource.MQSourceConnector",

"tasks.max": "1",
"topic": "TSOURCE",
"mq.queue.manager": "QM1",
"mq.connection.name.list": "localhost(1414)",
"mq.channel.name": "MYSVRCONN",
"mq.queue": "MYQSOURCE",
"mq.user.name": "alice",
"mq.password": "passw0rd",
"mq.record.builder": 

"com.ibm.eventstreams.connect.mqsource.builders.DefaultRecordBuilder",
"key.converter": "org.apache.kafka.connect.storage.StringConverter",
"value.converter": "org.apache.kafka.connect.storage.StringConverter"

}
}

A list of all the possible flags can be found by running the command cloudctl es 
connector-config-mq-source --help. Alternatively, see the sample properties file at 

Note: Omitting the --json flag will generate a mq-source.properties file that can be 
used for stand-alone mode.
Chapter 6. Practical agile integration 327



https://github.com/ibm-messaging/kafka-connect-mq-source/tree/master/config for a 
full list of properties you can configure, and also see 
https://github.com/ibm-messaging/kafka-connect-mq-source for all available configuration 
options.

Downloading the MQ source connector
Perform the following steps:

1. Log in to your IBM Event Streams UI.

2. Click the Toolbox tab and scroll to the Connectors section.

3. Go to the Connecting to IBM MQ? tile, and click Add connectors.

Ensure that the MQ Source tab is selected and click Download MQ Source JAR, this will 
download the MQ Source JAR file.

Configuring Kafka Connect
IBM Event Streams provides help with getting a Kafka Connect environment.

1. Follow the steps at 
https://ibm.github.io/event-streams/connecting/setting-up-connectors to get Kafka 
Connect running. When adding connectors, add the MQ source connector that you 
downloaded earlier.

2. Verify that the MQ source connector is available in your Kafka Connect environment:

$ curl http://localhost:8083/connector-plugins
[{"class":"com.ibm.eventstreams.connect.mqsource.MQSourceConnector","type":"sou
rce","version":"1.1.0"}]

3. Verify that the connector is running. For example, If you started a connector called 
mq-source:

$ curl http://localhost:8083/connectors
[mq-source]

4. Verify the log output of Kafka Connect includes the following messages that indicate the 
connector task has started and successfully connected to IBM MQ:

INFO Created connector mq-source
INFO Connection to MQ established

Send a test message
1. To add messages to the IBM MQ queue, run the amqsput sample and type in some 

messages:

/opt/mqm/samp/bin/amqsput <queue_name> <queue_manager_name>

2. Log in to your IBM Event Streams UI.

3. Navigate to the Topics tab and select the connected topic. Messages appear in the 
message browser of that topic.

6.8  Perform event-driven SaaS integration 

With the vast adoption of SaaS applications, there is an inevitable need to integrate these 
either to keep data in sync, or to progress business processes. It is no longer feasible to 
expect a centralized integration team to keep up with these new integration demands. 
328 Accelerating Modernization with Agile Integration

https://github.com/ibm-messaging/kafka-connect-mq-source/tree/master/config
https://github.com/ibm-messaging/kafka-connect-mq-source
https://ibm.github.io/event-streams/connecting/setting-up-connectors


Business teams need an easy, guided, intuitive, data driven integration tooling that they can 
use themselves, without having to refer to a central team of integration specialists. They need 
an agile integration tooling that is of low complexity, and highly productive with extensive list 
of built-in connectors to integrate sales, marketing and CRM applications.

IBM App Connect Designer is a browser-based, all-in-one integration tool for connecting 
applications, integrating data from on-prem service to Cloud, and building and invoking APIs. 
You can build flows that recognize and respond to new events, or batched or events, or are 
triggered based on a scheduler, and deploy them within minutes on IBM Cloud.

It should be noted that while IBM App Connect can be purchased separately, users of IBM 
App Connect now have access to Designer in order to use the vast array of SaaS connectors, 
under their current license agreement. 

6.8.1  Scenario

In this section, we illustrate how IBM App Connect Designer can be used to help a Store 
Warehouse business team to be productive adopting SaaS integration to connect to 
Salesforce, Slack and Gmail, based on the receipt of an IBM MQ message as shown in 
Figure 6-239. 

Figure 6-239   Perform event-driven SaaS integration

Currently, the store uses a manual process to track who are the customers that have ordered 
this stock, generate the customer list for confirmed orders, and send emails to customers with 
orders in pending status. This manual order process involves multiple different steps, 
accessing to different data repositories to do update and report generation. 

The business team want to be able to automate the order tracking process whenever new 
stock has arrived. They have recently adopted Salesforce SaaS as their CRM to help improve 
customer shopping experience. Using IBM App Connect Designer, the team is now able to 
automate the order process on the fly using an Event Driven flow. When new stock has 
arrived, it will trigger a flow via an IBM MQ messaging that contains the product code. The 
flow retrieves all the orders from Salesforce that has this product ordered, with associated 
customer information. Then the list is processed according to order status. If the status is 
activated, a row will be generated to Google Sheet. Otherwise, send an email to inform the 
customer about stock arrival. An instant Slack message will also be generated if the email 

SaaS Application

API invocation(s)

IBM MQ

Event-based SaaS Integration
(using IBM App Connect Designer)

Salesforce Slack Gmail
Chapter 6. Practical agile integration 329



address is missing. The flow is completed with an automatic notification being sent after the 
order list is processed.

6.8.2  IBM App Connect event-driven flow to Salesforce, Google and Slack 
SaaS applications

This tutorial assumes that you have signed up for free or trial accounts for Salesforce 
developer, Gmail, and Slack or that you have business accounts. In addition, you have 
already registered for a free IBM Cloud user ID, where you can access a full catalog of IBM 
Cloud solutions, including IBM App Connect Designer and IBM MQ on Cloud, which are used 
in this tutorial.

The steps in the next sections guide you through the creation of the following event flow that 
is shown in Figure 6-240 and Figure 6-241. 

Figure 6-240   Completed SaaS Integration event flow - 1

Additional references:

� How to use IBM App Connect with Salesforce:

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-salesforce/

� How to use IBM App Connect with Gmail:

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-gmail/

� How to use IBM App Connect with Slack:

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-slack/

Note: For readability, we split the event flow in two figures.
330 Accelerating Modernization with Agile Integration

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-salesforce/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-gmail/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-slack/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-slack/


Figure 6-241   Completed SaaS Integration event flow - 2 (Continued from the previous figure)

6.8.3  Prerequisites 

This scenario requires Salesforce objects: Account, Product, Order and Contract to be 
created or already existed. Accounts will have valid contract which link to products and 
orders. You should also have an account with Google, to generate the process order list in 
Google sheet and using Slack for instant messaging. Using IBM MQ message as our event 
flow trigger, that is, upon arrival of a message on the queue, the IBM App Connect flow will be 
initiated and run. 

If you are new to IBM MQ on Cloud, refer to the following tutorial to learn and create a queue 
for use with the IBM App Connect flow. 

6.8.4  Create flows 

Perform the following steps to create the flows for this tutorial:

1. Log in to IBM MQ console on the IBM MQ on Cloud instance:

As shown in Figure 6-242 you should have created a queue manager QM1, with these 
default local queues. The queues are running and waiting for messages to arrive, in this 
scenario, it will be the product ID that has arrived in the warehouse. We will put a message 
in the queue when we perform the flow testing:   

Note: To access IBM MQ on Cloud Tutorial refer to the following link: 
https://www.ibm.com/cloud/garage/dte/tutorial/tutorial-mq-ibm-cloud.
Chapter 6. Practical agile integration 331

https://www.ibm.com/cloud/garage/dte/tutorial/tutorial-mq-ibm-cloud


Figure 6-242   QM1 on IBM Cloud

2. Log in to App Connect Designer.

3. From the Dashboard, click New → Event-driven flow, and name it as Process 
Salesforce Orders. Figure 6-243 shows the IBM App Connect dashboard.

Figure 6-243   ProcessSalesforce Orders

4. Select MQ with new message arrive on queue as the event that is to trigger the flow. An 
IBM MQ connection will be created using the account you added. See Figure 6-244.
332 Accelerating Modernization with Agile Integration



Figure 6-244   Using IBM MQ as the trigger application

5. In the following steps we create integration to different SaaS applications, Salesforce, 
Gmail and Slack using the IBM App Connect Designer’s out-of-the-box connectors, to 
complete the order process automation.

a. Explanation: To retrieve the stock description and customer information, we need to 
connect to the Salesforce → Retrieve Orders application and the Salesforce → 
Retrieve Users application. In Salesforce, Objects are linked via relationship. In this 
case, Order Product is linked to Orders via Product_ID, and Owner_ID is linked to 
Account (Customer Information). Hence, there is no need to write a complex lookup 
query to join various objects to get to the required data. IBM App Connect Designer 
simply and easily accesses to these records by invoking the exposed Application's API 
and out-of-the-box connectors. 
Figure 6-245 shows the completed Salesforce flow design which we will construct in 
the next steps.

Figure 6-245   Retrieve Order and Customer information 

b. Choose Salesforce → Orders → Retrieve Products as the next application after MQ. 
Set a condition for the data retrieval where you want to retrieve the product details 
using the product ID:

c. Click Add condition and then select Order ID from the drop-down list.

d. Leave the operator as equals. Then in the adjacent field, select Message data from the 
list.

e. Set the maximum number of items to retrieve as 10. See the following note. 

f. If no item is found, we want to continue the flow and issue a “204: No content status 
code 1”.

Tip: Refer to the Salesforce website to understand Object Relationship: 
https://help.salesforce.com/articleView?id=overview_of_custom_object_relationsh
ips.htm&type=5.
Chapter 6. Practical agile integration 333



Figure 6-246 shows Salesforce Retrieve products.

Figure 6-246   Retrieve Product information for the arrival product code

g. Next, we want to generate a list of orders from Salesforce that contains this product. 
Repeat the previous step. But this time, choose Salesforce → Orders → Retrieve 
Order Product using the Product ID retrieved from previous step (b). Product ID is the 
internal Salesforce generated ID that link the Product to the Orders. See Figure 6-247 
on page 335.

Note: You can easily modify the flow to handle larger quantity of new stock arrival, and 
run it as a scheduled batch job. Batch processes are optimized for handling much larger 
volumes of data than the standard retrieve action. More information on batch 
processing:

https://developer.ibm.com/integration/blog/2018/03/16/introducing-batch-proc
essing-in-ibm-app-connect/. 
334 Accelerating Modernization with Agile Integration

https://developer.ibm.com/integration/blog/2018/03/16/introducing-batch-processing-in-ibm-app-connect/.
https://developer.ibm.com/integration/blog/2018/03/16/introducing-batch-processing-in-ibm-app-connect/.


Figure 6-247   Retrieve order product

h. To process all the orders from the retrieved list, we use For each loop, under the 
Toolbox option. The collection of items to process is called Salesforce/Retrieve 
order product/OrderProducts. 

i. Provide a display name to the For each loop, use Retrieved Order. 

ii. Accept the default, Process all the items sequentially. 

iii. Choose Process all other items and continue the flow. 

 Figure 6-248 shows the For each loop definition.

Figure 6-248   Process each order 

i. For each retrieved order, we want to retrieve the product description from the 
Salesforce application that is called Retrieve Orders and customer information from 
the Salesforce application that is called Retrieve Users.
Chapter 6. Practical agile integration 335



i. Choose Salesforce → Orders → Retrieve orders as the next application in the 
For loop. Set a condition for the data retrieval where you want to retrieve the 
product details using the order ID:

ii. Click Add condition and then select Order ID from the drop-down list.

iii. Leave the operator as equals. Then in the adjacent field, click the Insert Reference 
button and select Order ID ($Foreachitem.OrderId). See Figure 6-249.

Figure 6-249   Select Order ID

iv. Set the Maximum number of items to retrieve as 10.

v. If no item is found, we want to continue the flow and issue a “204: No content status 
code 1” message.

vi. To retrieve customer information, we choose Salesforce → Orders → Retrieve 
user as the next application to connect. Follow the preceding steps, and fill in the 
information as shown in Figure 6-250 on page 337. 
336 Accelerating Modernization with Agile Integration



Figure 6-250   Retrieve customer information for the retrieved order

j. For our final action, we want to process orders based on order status. We want to 
generate a Google Sheets spreadsheet that contains all the orders with Activate status 
for sending to the warehouse processing. For the orders status that are in Draft, we 
want to inform customers via email on stock arrival. Otherwise, send an instant 
message on Slack for orders that have missing email address. 

Figure 6-251 shows the completed Nested IF conditions.
Chapter 6. Practical agile integration 337



Figure 6-251   Process orders based on order status

k. We need to define some conditional logic to make that decision, so add an If 
(conditional) node to your flow. Click the plus (+), open the Toolbox tab, then select If 
(conditional). In the If node dialog box, configure the “if” branch.

i. In the first field of the “if” statement, expand Salesforce → Update or create 
contact response. Then, select Status ($SalesforceRetrieveorders.Status) from the 
insert reference drop-down and type Activated next to equals. See Figure 6-252.

Figure 6-252   Selecting orders that are Activated

ii. Click (+) and select Generate Google Sheet Create row to capture the orders as 
the next action. If you haven’t already connected a Google sheets account, click 
Connect to Google Sheets and follow the instructions to allow IBM App Connect 
to connect to your Google Sheets account.
338 Accelerating Modernization with Agile Integration



iii. Select the Google Sheets spreadsheet (and then the worksheet) that you 
configured with the column headings: Customer Name, Order Product ID, Qty and 
Date.

iv. For each field that you want to populate, click the Insert a reference icon, then 
select the Salesforce field that contains the data that you want to transfer to Google 
Sheets. The first field will be customer name 
($SalesforceRetrieveuser.Firstname) complete the fields as shown in 
Figure 6-253 on page 339.

Figure 6-253   Create a Google Sheet row for activated orders

l. In the Else branch, click Add else if to create a second IF condition from the Toolbox, 
it will be automatically called if2. In this condition, we check the email ID if it is present 
or missing in the Salesforce record. Populate the If condition as shown in Figure 6-254 
on page 340.
Chapter 6. Practical agile integration 339



Figure 6-254   Check email ID is empty

i. Click the (+) and then select Slack as your next application.

ii. Select Message → Create Message as the Slack action.

iii. If you haven’t already connected to a Slack account, click Connect to Slack and 
follow the instructions to allow IBM App Connect to connect to your Slack account.

iv. Select the channel that you want to post the message to. For this tutorial we have 
chosen test appcon so that only authorized users in that channel can see the 
message. Next, we format the message content in the text box using the order 
information we retrieved from Salesforce, namely Order ID and Order Name. 

Figure 6-255 on page 341 shows the formatted Slack message. 
340 Accelerating Modernization with Agile Integration



Figure 6-255   Slack instant message

v. Complete the Else action for if2 condition by connecting to Gmail as next action to 
inform customers of stock arrival. Click the (+) and then select Gmail > Create 
message as the action that IBM App Connect should use to send an email to inform 
customer of stock arrival. 

vi. If not already connected, click Connect to Gmail and then specify the values that 
will allow IBM App Connect to connect to your Gmail account. Then click Connect.

vii. Complete the Gmail fields as follows:

• To: Click within the field and then click Insert a reference. From the list, expand 
SalesfoceRetreiveUser → Users and select Email.

• Subject: Your order has arrived.

• Body: Type Dear and add a trailing space., click Insert a reference icon and select 
FirstName under SalesforceRetreiveUser → Users and add a comma (,) after 
firstname. Start a new line and type “Your order item” and select message data 
from Insert a reference icon list, then type “has arrived. Please let us know if 
you would like to confirm the order. Thanks.” 

Figure 6-256 on page 342 shows the Gmail message.
Chapter 6. Practical agile integration 341



Figure 6-256   Compose Gmail

6. The flow ends with a notification sent to the IBM App Connect Designer dashboard to 
inform that all orders for the product ID have been processed. The product id represents 
the message data that was put into our mq message payload that trigger our SaaS 
integration flow at the beginning. 

Figure 6-257 shows the notification sent to the IBM App Connect dashboard.

Figure 6-257   Notification to the IBM App Connect dashboard
342 Accelerating Modernization with Agile Integration



6.8.5  Test your flow

When you have successfully created the flow, you will see the running instance Process 
Salesforce Orders on the IBM App Connect dashboard. 

Figure 6-258 shows the flow instance in Running state.

Figure 6-258   Process Salesforce Orders

1. To test the flow, we first ensure that the related objects are existing in Salesforce with the 
product code that represent the new stock, this means Orders and Account are linked via 
an internal generated product ID to Orders and Order Product. If this is not already 
existed, see step 3 in section 6.8.4, “Create flows” on page 331. You can also refer to 
https://trailhead.salesforce.com/en/content/learn/modules/field_service_maint/f
ield_service_maint_assets.

2. New stock has arrived via an IBM MQ message:

a. Log in to IBM MQ console on IBM Cloud. Put a message into DEV.QUEUE.1 that 
represent the new stock that has arrived. 

b. The IBM App Connect flow Process Salesforce Orders will be triggered. A notification 
on the IBM App Connect dashboard will be generated showing that all orders have 
been successfully processed for the product code that you put into the IBM MQ 
message.

3. Orders List is generated as a Google Sheet:

a. Log in to Google, and check the Google Sheet generated for the Order list. Note that all 
the Order Product IDs should be the same, this is the internal Salesforce product ID. 
Figure 6-259 shows the generated list.
Chapter 6. Practical agile integration 343

https://trailhead.salesforce.com/en/content/learn/modules/field_service_maint/field_service_maint_assets
https://trailhead.salesforce.com/en/content/learn/modules/field_service_maint/field_service_maint_assets


Figure 6-259   Sample generated OrderList

4. Notify customer of new stock arrival via email:

a. Log in to the email account of the email address that was specified in the customer 
email of the Salesforce order. You will see a email to notify you that the new stock has 
arrived. 

Figure 6-260 shows the email to customer.

Figure 6-260   Generated email to customer

5. Instant messages for missing email address, and notification of flow completion:

a. You will receive instant messages in Slack notifying you on orders with missing email 
address, if any. In this case, we do not have any missing email address in the 
Salesforce Orders. 

b. A notification message will also be shown on the IBM App Connect dashboard to 
inform you of the successful completion of the order processing for the new stock. 

6.8.6  Conclusion

You have seen how quickly the business team is able to process all the orders upon arrival of 
the new stock, using the intuitive user interface of IBM App Connect Designer, connecting 
various SaaS applications with extensive list of connectors. 

By using IBM App Connect Designer to act on events and automate process through SaaS 
application connectors, business teams can reduce time to market and improve ROI. 
344 Accelerating Modernization with Agile Integration



Business requirements are built and delivered independently on a scalable, secured, and 
industry-based, standard IBM Cloud platform. 

6.9  Implementing a simple hybrid API

To deliver engaging customer experiences, the business team needs to provide APIs that 
combine data from multiple sources. They want to explore ideas for these new APIs without 
the cost and time implications of a full IT project. They do this by using integration specialists’ 
APIs that already exist for the data that they need. This section shows how IBM App Connect 
Designer enables non-integration specialists to implement hybrid APIs that are based on a 
composite of existing on-premises and SaaS-based APIs. 

6.9.1  Business scenario

The business team are exploring new innovative API possibilities that would combine existing 
APIs with data from the SaaS applications they use. They want to be able to prototype these 
without the need for an integration specialist from the central team.

Using IBM App Connect Designer, you can easily create cloud managed APIs that enable 
you to call out to an on-premises API, and aggregate data between enterprise systems and 
SaaS applications.

We will continue to use the store warehouse for our business scenario. Currently, the store 
has its stock inventory and CRM systems on-premises, exposing the data via API. They have 
recently adopted ServiceNow SaaS for incident management to improve customer 
experience. ServiceNow is a cloud-based platform that supports service management for all 
departments of your business including IT, human resources, facilities, field service, and 
more.

The business team would like to automate the initiation of incident tracking in ServiceNow 
whenever a stock product is under recall due to a fault. By utilizing an existing on premises 
API that provides a customer list with the product installed, the business team will aggregate 
the data using an IBM App Connect Designer API flow to generate new incidents into its 
ServiceNow application. This hybrid composition will be exposed as an API such that it can 
be initiated by other applications. See Figure 6-261 on page 346.
Chapter 6. Practical agile integration 345



Figure 6-261   Perform event-driven SaaS integration

6.9.2  Invoking existing APIs from IBM App Connect Designer

This scenario invokes downstream systems via APIs. IBM App Connect enables invocation of 
existing APIs in a number of ways.

� Invoking imported API definitions for external APIs

� Invoking operations known to and managed by IBM App Connect

� Using raw HTTP connectivity

Using APIs imported from OpenAPI documents 
You can import OpenAPI documents that contain API definitions into IBM App Connect. Then 
you can call the API from a flow. The OpenAPI Specification previously known as Swagger 
document, is a definition format that is written in JSON or YAML for describing REST APIs. 
You describe the API details such as available endpoints and operations, authentication 

SaaS Application

API invocation(s)

Exposed API

API implementation

Salesforce Googlesheets 
(optional, for testing)

API implementation

ServiceNow

IBM App Connect Designer
Integration flow

Simulation of API  combining on-premise Stock 
and CRM systems

Hybrid API

Note: To use an API in a flow, you must first connect IBM App Connect to the API by 
using the security scheme that is configured for that API. This will be explained in 6.8.4, 
“Create flows” on page 331.
346 Accelerating Modernization with Agile Integration



methods, and other information in this document. Each imported document is added as an 
API to the IBM App Connect API catalog, 

Using shared APIs that are managed natively in IBM Cloud
You can access to a set of APIs that are shared within your IBM Cloud organization. The 
shared APIs are available in the IBM App Connect catalog of applications and APIs. These 
shared APIs are managed natively in IBM Cloud by the API management solution IBM API 
Connect. Shared APIs can come from many sources, including those that are created using 
integrated IBM Cloud services such as the IBM App Connect service, APIs that are exposed 
by Cloud Foundry applications, and APIs that incorporate OpenWhisk actions that are 
created using Cloud Functions.

Using the invoke method for the HTTP application
Another way to invoke an API from the flow is to use the HTTP Invoke Method node under 
the Applications tab. You can use IBM App Connect to pass key data from an app into an 
HTTP “invoke” action that calls out to an HTTP endpoint, and then pass data that is returned 
from the HTTP response into other apps in the flow. 

There are network and security setups that you need to consider before you use the HTTP 
invoke method, for accessing API end points that resides in a private network. You should 
read and follow the detail setup instructions as described in the blog: How to use IBM App 
Connect with HTTP before your flow design.

6.9.3  Solution overview

The completed scenario flows consist of two separate IBM App Connect flows, namely 
Recall List and Hybrid API, as shown in the following figures. The on-premises API called 
RecallList will be simulated using IBM App Connect Designer API flow. The second IBM App 
Connect Designer API called Hybrid API will create ServiceNow incidents for all the recalled 
customers that are retrieved as response from RecallList.

You can easily modify the simulated flow to reflect the actual on-premises API that your 
organization has. You must register and share the API (in this case, RecallList) in IBM App 
Connect Designer Catalog and trigger it in the Hybrid API flow. Steps for doing this have been 
described in section 6.9.2, “Invoking existing APIs from IBM App Connect Designer” on 
page 346. 

Tip: Refer to this blog for a step-by-step guide to import OpenAPI into IBM App Connect 
Designer:

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-openapi/#openapi_add-app.

Tip: This blog provides details on How to use IBM App Connect with shared APIs in IBM 
Cloud: 

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-sharedapis-in-ibm-cloud/.

Tip: You can find the blog “How to use IBM App Connect with HTTP” here:

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-http/.
Chapter 6. Practical agile integration 347

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-openapi/#openapi_add-app.
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-openapi/#openapi_add-app.
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-sharedapis-in-ibm-cloud/.
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-sharedapis-in-ibm-cloud/.
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-http/.
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-http/.


Figure 6-262 shows the simulated on-premises API Recall List.

Figure 6-262   Recall List API

Figure 6-263 on page 348 shows the Hybrid API.

Figure 6-263   Hybrid API 

6.9.4  Preparing the external SaaS applications

This tutorial assumes that you have signed up for free or trial accounts for Salesforce 
developer, GoogleSheet and ServiceNow accounts or that you have business accounts. In 
addition, you have already registered for a free IBM Cloud user ID, where you can access a 
full catalog of IBM Cloud solutions, including IBM App Connect Designer and API Connect, 
which will be used in this tutorial.

This scenario requires Salesforce Accounts and Asset object to be created in the Salesforce 
system. A Salesforce asset represents customer purchased or installed products. The 

Additional references:

� How to use IBM App Connect with Salesforce:

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-salesforce/

� How to use IBM App Connect with ServiceNow:

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-servicenow/
348 Accelerating Modernization with Agile Integration

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-salesforce/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-servicenow/


on-premises API Recall List will access Salesforce system to retrieve all the customers based 
on a recall product ID, and generate this list of recalled customers.

In the second flow, called Hybrid API, you should have a ServiceNow account with a running 
instance to view the new incidents that are created for the recalled customers. If you are not 
familiar with this, refer to section 6.8.2, “IBM App Connect event-driven flow to Salesforce, 
Google and Slack SaaS applications” on page 330 for more details on IBM App Connect 
integrate with ServiceNow.

6.9.5  Create simulated on-premises API flow 

Perform the following steps to create the flow:

1. Log on to IBM App Connect Designer.

a. On the Dashboard in IBM App Connect Designer, click New → Flows for an API. 
b. Enter a name that identifies the purpose of your flow, for example APIRecallList.
c. Create the model named RecallAssetList. This defines the object you are working with; 

in this case, we are generating a list of customer records.
d. On the Create Model panel, there are two tabs: a Properties tab and an Operations 

tab. Properties are required to define the structure of the object that the API will work 
with. Use product name as ID, fill in all the properties as shown in Figure 6-264 on 
page 349.

Figure 6-264   Properties defined for RecallAssetList

e. The Array of Objects called Account List, which consists of AccountName, AssetName, 
InstalledDate, Status and SerialNo, represents the API Response.

Note: To understand Salesforce Account and Asset object relationship refer to the 
following document:

https://trailhead.salesforce.com/en/content/learn/modules/field_service_maint/f
ield_service_maint_assets.
Chapter 6. Practical agile integration 349

https://trailhead.salesforce.com/en/content/learn/modules/field_service_maint/field_service_maint_assets
https://trailhead.salesforce.com/en/content/learn/modules/field_service_maint/field_service_maint_assets


2. To define how the API will interact with the objects, click Operations. You can add 
operations to:

� Create an object.

� Retrieve an object by using its unique ID or by using a filter.

� Update or create an object (by using its ID or a filter), where the object is updated if it 
exists, or created if it doesn’t.

3. Define GET as the Operation of the request and click within the Select an operation to add 
drop-down list, and then select Retrieve RecalledAssetList by ID. The 
GET/RecalledAssetList/{id} will be automatically generated.

4. Click Implement flow to implement the API operations.

Figure 6-265 shows the APIRecallList operation.

Figure 6-265   Retrieve RecalledAssetlist by ID

5. You will see a basic flow in the flow editor, with a Request node, a Response node, and a 
space to add one or more target applications. We want to retrieve the list of customers that 
have purchased the recalled product, from the Salesforce Retrieve Asset object. This 
will return a list of Account ID that we will use to retrieve customer records next.

6. Retrieve all the Account ID records that have the recalled product:

a. If you haven’t already connected IBM App Connect to Salesforce, specify the name 
and password of your Salesforce account. Click (+), Select Salesforce → Assets → 
Retrieve assets. Click Add a Condition to specify the selection condition. Under the 
Where* clause choose Asset Name from the drop-down list, and click Insert a 
Reference on the adjacent field, and select ID (this is the request ID field that we have 
defined in the properties).

b. Click Add Condition to add AND clause. Select Status from the drop-down list, and 
type Installed on the adjacent field.

Figure 6-266 on page 351 shows the Retrieve Asset condition.

Note: A property that is set as the ID might indicate that your flow must return this property 
when creating an object. Or it might indicate that the property must be sent in a request to 
update or retrieve an object by using its ID. You can use ID against only one property. 
350 Accelerating Modernization with Agile Integration



Figure 6-266   Retrieve assets that are under recalled 

Leave the defaults for the rest of the fields on the form. 

7. Using the Asset List that was generated, our next action is to build the list of customers 
that own these assets from Salesforce Retrieve Accounts object using the Account 
Name. (This field is returned as one of the data from the Asset List.)

8. Add the For each loop under the Toolbox option as the next action, For each:Salesforce 
Asset:

a. On the Input tab, provide a display name to the For each loop, use Salesforce Asset.
i. The collection of items to process is called Assets. 
ii. Accept the default. Process all the items sequentially.
iii. Choose Process all other items and continue the flow. 

Figure 6-267 on page 352 shows the For Each input construct.
Chapter 6. Practical agile integration 351



Figure 6-267   Process Asset List

b. Click (+) and select Salesforce → Accounts → Retrieve Accounts as the next action 
inside the for loop, 

i. Click Add a condition for our selection of accounts, in the Where* clause choose 
Account Id from the drop-down list, and click Insert a Reference on the adjacent 
field, and select Foreach Salesforce Asset/Asset/Account Id.

ii. We want to process 10 items in this tutorial, hence click Exit the flow with an error, 
if the maximum is exceeded. (For bulk data processing, you should be using 
Scheduler jobs).

iii. If no item is found, exit the flow with the ‘404’ error code.

Figure 6-268 on page 353 shows the selection condition.
352 Accelerating Modernization with Agile Integration



Figure 6-268   Retrieve Customer Account Details

c. Next, we define the Output mappings of the customer information we required for the 
API response as follows:
i. Click the Output tab to capture the customer records into an array 
ii. On the Edit Properties panel, perform the mappings by clicking Insert Reference 

for the following fields and choose the respective properties as shown here. 

• Account Name: SalesforceRetreiveAccount.Name

• Asset Name: Request URL parameters / Object/ id

• Installed Date: For each: Salesforce Asset / Asset / Install Date

• Status: For each: Salesforce Asset / Asset / Status

• Serial Number: For each: Salesforce Asset / Asset / Serial Number

iii. When the final item has been processed, the complete output made available is an 
array of the mapped output objects we defined above. The completed mapping is 
shown in Figure 6-269 on page 354.
Chapter 6. Practical agile integration 353



Figure 6-269   Capture the customer information into an array

9. The next step is generating the customer list to Google Sheet and this is optional. For 
testing purposes, you can remove this action after validating the customer data and 
verified that the flow runs successfully. 

a. Click (+) and select Generate Google Sheet Create row to capture the orders as the 
next action. If you have not already connected a Google Sheets account, click 
Connect to Google Sheets and follow the instructions to allow IBM App Connect to 
connect to your Google Sheets account.

b. Select the Google Sheets spreadsheet (and then the worksheet, which is called 
Recalled Customer List in this tutorial) that you configured with the column headings: 
Account Name, Asset Name, Installed Date, Status, Serial Number.  

c. Map the spreadsheet columns by clicking Insert Reference for each of the following 
fields and choosing the property that is listed here: 

• Account Name: SalesforceRetreiveAccount.Name

• Asset Name: Request URL parameters / Object / id
354 Accelerating Modernization with Agile Integration



• Installed Date: For each: Salesforce Asset / Asset / Install Date

• Status: For each: Salesforce Asset / Asset / Status

• Serial Number: For each: Salesforce Asset / Asset / Serial Number

Figure 6-270 shows the Google Sheet column mappings.

Figure 6-270   Google Sheet with list of Recalled Customers

10.Finish the flow by mapping the API response body using the array generated from the For 
each loop:

a. Click the Response node in the flow, and map the output fields as follows by clicking 
Insert reference:

• ID: Request URL parameters / Object / id

• Status: Type Report generated for <ID>

• Account List: For each: Salesforce Asset Output / Array

• Account Name: Parent mapping item: Array / Array / Output/ AccountName 

• Asset Name: Parent mapping item: Array / Array / Output/ Asset Name

• Installed Date: Parent mapping item: Array / Array / Output/ Install Date

• Status: Parent mapping item: Array / Array / Output/ Status

• Serial Number: Parent mapping item: Array / Array/ Output/ Serial Number
Chapter 6. Practical agile integration 355



Figure 6-271 on page 356 shows the API response mappings.

Figure 6-271   Response data for the API RecallList

Note: In the Response header section, you can choose your own response code 
mapping. The following response codes are returned for the different operations:

� Create operations return a response code of 201 (record created).

� Retrieve operations return a response code of 200 (record retrieved).

Replace or create operations return a response code of 200 (record replaced) or 
201 (record created).
356 Accelerating Modernization with Agile Integration



b. You have completed the on-prem simulated API. Click Done to return to your model.
c. From the options menu (:), click Start API.
d. We will perform an integrated test upon completion of the Hybrid API. 

6.9.6  Create Hybrid API

Back to our business scenario, the business team wants to be productive quickly by reusing 
an existing on-premises API, and build a new API. The hybrid API will help the team to 
automate the creation of customer cases in their newly adopted SaaS application, 
ServiceNow, aggregating data from the existing API. The ServiceNow incidents will be 
created for all the affected customers who have purchased and installed the product under 
recalled. 

Adopting the hybrid AP will help the team to monitor and provide better customer support with 
all the information at one place. 

In the following steps, we will create new ServiceNow incidents for all the customers that are 
in the recall list (data from existing API). Using IBM App Connect Designer, this can be 
achieved in three simple processes:

1. Invoke RecallList API.

2. For each customer record:

a. Create a ServiceNow incident. 

b. Capture a new incident number.

c. Complete until all records are processed.

3. Map API Response data to return new incidents created in ServiceNow.

Create the flow 
Perform the following steps to create the flow:

1. Click New flows for an API and choose first action to be API instead of Application.

a. On the Dashboard in IBM App Connect Designer, click New → Flows for an API. 
b. Enter a name that identifies the purpose of your flow, called it RecallProduct.
c. Create the model property as RecallProductName, this defines the object that you are 

working with. In this case, we are using this ID to retrieve the list of recalled customer 
records and create a corresponding ServiceNow incident for each customer.

2. Next, click the Operation tab to define the API operation. Select CreateRecallProduct 
from the drop-down list. The POST/RecallProduct will be automatically generated. Click 
Implement flow to continue. See Figure 6-272 for details.
Chapter 6. Practical agile integration 357



Figure 6-272   RecallProduct Operation

3. To add the target application to the flow, click (+) and choose API tab. You will choose the 
RecallList API (which you created as our simulated on-premises API) and select GET / 
RecalledAssetList /{ id} to continue.

Figure 6-273 shows the Add the API RecallList as the first action.

Figure 6-273   Select APIRecall List 

4. The input to the flow will be a string that contains the Recall product name. We define it in 
the ID field by clicking the Insert Reference button and selecting Request body 
parameters / Object / Object / RecallProductName. See Figure 6-274.
358 Accelerating Modernization with Agile Integration



Figure 6-274   Define the input field for invoking API Recall List

Figure 6-275   Invoke RecallList API using product name

5. Add an If condition under the toolbox to check that the response status is successful as 
the next action. 

6. Next, we process the list of recall customers using the For each loop. And for each 
customer we want to create a new ServiceNow incident, and capture the created incident 
number into an array called IncidentCreated. Figure 6-276 on page 360 shows the flow 
design.

Note: In order to pass data from a nested “If / For loop” to the rest of the flow, we need 
to define the output schema properties, and map the output data. In our scenario, we 
want to capture the list of new ServiceNow incidents created for all the recall customers 
and compose it as our API response. We will perform this step after we complete the 
For loop, when the list of customer SeviceNow incidents has been generated and made 
available for data mapping.
Chapter 6. Practical agile integration 359



Figure 6-276   Create ServiceNow Incidents

7. Choose For each under the Toolbox option as the next action. Use the AccountList 
(retrieved from RecallAPIList) object as the Input → Select the collection of items to 
process: as the Input to the For each loop. Leave the defaults for the rest of the fields.

Figure 6-277 shows the process all the Recall Records window.

Figure 6-277   For each Input property
360 Accelerating Modernization with Agile Integration



8. For each retrieved customer record, we want to create a new Incident case in ServiceNow 
application. Choose ServiceNow create incident as the next application in the For each 
loop. If you have not already connected to your ServiceNow instance, choose the account 
and click Connect. After it is connected, the Populate the target fields in ServiceNow 
screen will display, ready for you to create the incident record details.

9. Populate the new incident record with the information we retrieved from the RecallAPI List 
array, we will populate only a subset of the ServiceNow fields, as follows:

– Caller: Type Hybrid API 

– Category: Type Hardware

– SubCategory: Click within the field and then click Insert a reference button, From the 
list, expand Request body parameters → Object and select RecallProductName.

– Scroll down to the field called Short Description. and type Product Serial Number: and 
click the Insert Reference button to select the object Foreach API recall object / 
Object {}. This object gives us the collection of the record information, but we want to 
extract only the Serial No. 

– To do the extraction, click the object {} on the target field. This will change the object 
display to {{$Foreach2item}}, and choose Edit Expression. Append Serial No to the 
end of the field, the final expression will look like {{$Foreach2item.SerialNo}}.

– WatchList: Type Ticket created for: and repeat the previous two steps to extract 
Account Name from the Foreach API recall object / Object{}. The final expression 
will be {{$Foreach2item.AccountName}}.

Figure 6-278 shows the ServiceNow field mappings for Called / Category / 
SubCategory. 

Figure 6-278   ServiceNow Incident detail 1 of 2 display fields

Figure 6-279 shows the ServiceNow field mappings for Short Description and Watch 
List.
Chapter 6. Practical agile integration 361



Figure 6-279   ServiceNow Incident detail 2 of 2 display fields

10.Now, we are ready to define the Output Schema of the For loop and If condition to capture 
the new ServiceNow incidents generated, to include in our API response. 

a. Go back and click the For construct, and select the Output tab, click Add a property 
to specify the structure of the data as it will appear after the ‘For each’ node. The field 
name will be IncidentCreated and its type is String. 

b. After creating the structure we choose ‘Edit mappings’ to select the data we want to 
appear in our new output collection. Here we use the ID from ServiceNow to populate 
the Incidentcreated field. See Figure 6-280 on page 362 for the field details. 

Figure 6-280   Mappings of the IncidentCreated field

i. Next we will complete the output schema and data for the If condition. Go back to 
the If construct, and click Output Schema, type IncidentsCreated in the property 
field (click Add a property if it is not already there).

i. Click on the Output data, you will see the IncidentCreated label that is created for 
you, and ready for data mappings. Click on the insert a reference button, select 
For each: API Recall-lDH5XD Object Output / Array / Output / 
IncidentsCreated, this is the array of all the ServiceNow incidents that are 
generated as output data from the For loop.

See Figure 6-281 on page 363 for the field mapping details.
362 Accelerating Modernization with Agile Integration



Figure 6-281   If condition Output Schema and Output Data mappings

11.In our final step, we map the API Response data to return new incidents created in 
ServiceNow, using the array we created in the preceding step. 

a. Click Response node. Map the Response Header and Body as shown in Figure 6-282 
on page 364. 

Tip: You can create additional field capture in the Output Schema and Output Data in 
the For loop or If condition. To learn more, refer to the following document: 

https://developer.ibm.com/integration/blog/2018/05/15/process-data-node-ibm-
app-connect/

In addition, you can apply JSONATA function to transform your data to the desired 
format including concatenation of different fields, date formats, string conversion:

https://developer.ibm.com/integration/docs/app-connect/creating-managing-eve
nt-driven-flows/completing-fields-action/applying-jsonata-functions/
Chapter 6. Practical agile integration 363

https://developer.ibm.com/integration/blog/2018/05/15/process-data-node-ibm-app-connect/
https://developer.ibm.com/integration/docs/app-connect/creating-managing-event-driven-flows/completing-fields-action/applying-jsonata-functions/


Figure 6-282   Hybrid API response 

6.9.7  Test the flows

There are two APIs that we need to perform integrated testing. These are 1) an existing 
on-premises API to generate the recall list and 2) a Hybrid API that invokes the on-premises 
API to create ServiceNow for all the recall customers.

You might be using an existing on-premises API instead of our simulated on-premises API, 
which we built in the previous steps. In that case, you should have already gotten familiar with 
the section 6.9.2, “Invoking existing APIs from IBM App Connect Designer” on page 346, 
which explains the different methods for invoking the API in IBM App Connect. In our testing, 
we will use the API Sharing Outside of Cloud Foundry Organization method inside the built-in 
API portal.

This tutorial assumed that there are Salesforce Accounts with linked Assets are already 
existed in the Salesforce system. This represents the products that the customer has 
purchased and installed. If it does not exist, follow the steps in 6.8, “Perform event-driven 
SaaS integration ” on page 328 to understand the steps involved in setting this up. 

6.9.8  First, test the simulated on-premises API

Follow the steps described here for testing of the simulated on-premises API Recall List: 

1. On the dashboard, click the API Recall List. After it is loaded, click the Menu at the upper 
right, and click Start API. 

2. Click the Manage tab and scroll down to the Sharing Outside of Cloud Foundry 
organization section (in the lower part of the page). 

3. Click Create API key, give the key a descriptive name; for example: RecallAssetList, and 
then click Create. 

4. Click the API Portal link. This opens the API in an API portal window with the API request 
and response information, plus some response data.

5. To invoke your API in the API portal, click Try it.
364 Accelerating Modernization with Agile Integration



6. Using the product code as the recalled product (Platinum in our tutorial) enter it on the 
Model id field under Parameters/Id* and click Call operation. Figure 6-283 on page 365 
shows the API Call operation.

Figure 6-283   Using product ID Platinum to invoke the Recall API

7. This will invoke the API flow. You will receive the code 200 OK as a successful response, 
with a list of customers with production information and a status-completed statement 
generated by the flow: "Id": "Platinum", "Status": "Report is generated for 
Platinum" below the response.

Figure 6-284 on page 366 shows partial response details and status from RecallList API.
Chapter 6. Practical agile integration 365



Figure 6-284   Recall customer and product information

8. If you have incorporated the Google Sheet in your flow to be used for testing purpose, you 
will see the following rows generated as output. Note: This information will be exactly the 
same as our API response data, which is displayed on the API portal. 

Figure 6-285 on page 366 shows customer and product information on Google Sheet.

Figure 6-285   Google Sheet output

Congratulations! You have successfully implemented the Recall API.
366 Accelerating Modernization with Agile Integration



6.9.9  Final Hybrid API integrated testing 

We are now ready to invoke the Hybrid API flow to automate the ServiceNow incidents 
creation for all the customers under the recall program 

1. On the dashboard, click on HybridAPI flow, ensure it is running, if it is stopped, start the 
API by clicking the Start API to start it.

2. Follows the steps number 2 through 5 in the previous section 6.9.8, “First, test the 
simulated on-premises API” on page 364.

� Using the product ID as the recalled product (SLA9080 in our tutorial) enter it on the 
Parameter/body/id and click Call operation. The flow will return a success response with 
a list of the new generated incidents ids. 

3. Connect to your ServiceNow instance, and you will see all the newly created incidents with 
Caller name Hybrid API.Figure 6-286 on page 367 shows ServiceNow incidents created 
for all the recall customers.

Figure 6-286   ServiceNow incidents

4. You have successfully implemented the Hybrid API flow.

6.9.10  Conclusion

The business team has become productive with the adoption of IBM App Connect Designer 
to fulfill their new request. The data now passes between an imported API and designer 
flows, automatically, in real time. All these steps are done using configuration and 
data-mapping techniques, without any need for coding, and without the need of an integration 
specialist. 

Reusing APIs from existing environments in IBM App Connect Designer enables the 
exploration of new APIs in minutes or hours, rather than days or months.

6.10  Implement event sourced APIs

Modern applications have extremely challenging requirements in terms of response times, 
and availability. In our always-on, always-online world, most mobile applications must be 
Chapter 6. Practical agile integration 367



ready for use at any time of day, any day of the year. And the responsiveness of the 
interactive experience should be exceptional.

However, any significant application requires data, and not only data it owns, but data from 
other systems too. The exercises that we have done in the previous sections make it clear 
that the most obvious and straightforward way to retrieve data from other systems is via an 
API. However, an API is a real-time synchronous interaction pattern. The system at the other 
end of that interaction must be always available, and it must be suitably performant at all 
times. Where this availability and responsiveness is critical, we may need to look to 
alternative ways to provide more effective access to data.

6.10.1  Implementing the query side of the CQRS pattern

For an API to be highly responsive and available, it really needs a separate, read-optimized 
data store. The data store can hold the data in the most efficient form for the typical queries 
that we receive, as shown in Figure 6-287 on page 368. As noted in the introduction, a 
separate data store has little value for our simple, single-table example. On the other hand, if 
the "products" were actually a multi-table object you can imagine how this data store could 
provide significant read optimizations. 

This new data store needs to be populated and kept up to date, and must not be coupled into 
the main database from a runtime perspective. The obvious solution is to asynchronously 
update it from the event stream we created in 6.7, “Create event stream from messaging” on 
page 322. 

Figure 6-287   Implementing the query side of the CQRS pattern

Logical component boundary

Search
&

Read
(AC-IS)

(ES)

Read-optimized 
Datastore

Event Processing
(AC-IS)

(MQ)

Create
Update
Delete
(AC-IS)

API Management (APIC)

Optimized “Product”
API

option a)
(MQ Kafka connector)

PRODUCTS
Datastore
(DB2)

option b) 
(CDC)

C
O
M
M
AN
D

 P
AT

TE
R

N

Q
U
ER

Y 
PA

TT
ER

N

IBM App Connect
(Integration Server runtime)(AC-IS)

(DB2) IBM DB2 database

(APIC) IBM API Connect

(MQ)
IBM MQ 
(Queue Manager component)

(ES) IBM Event Streams

“Product Change” 
Event Stream
368 Accelerating Modernization with Agile Integration



In previous sections, we already explored how moving to an asynchronous pattern can help 
for data changes (the "Command" side of CQRS). In our case, the data was submitted over 
IBM MQ rather than over HTTP. In this section, we consider how we could also use 
asynchronous patterns to assist with reads (queries).

We are now effectively building out the "Query" side of the CQRS pattern.

6.10.2  Event sourced programming - a practical example

We have seen how the event stream we created in 6.7, “Create event stream from 
messaging” on page 322 can be used to improve the performance and availability within the 
boundary of our "Product" business component. This is powerful in itself already. But for the 
practical part of this section, we want to take this a little further. We want to show how the 
event stream can also be further reused in other components that implement distributed 
"event sourced" patterns.

Figure 6-288   Multiple applications reusing both the APIs and the event streams for best customer experience

Figure 6-290 on page 372 shows how multiple engagement applications might each need to 
build their own read-optimized data stores to serve their specific needs. 

The engagement applications can then use a combination of:

� APIs for simplicity of the programming model. 

PRODUCT component

Optimized “Product”
API

Local “event sourced” 
read-optimized datastore

“Product Change” 
Event Stream

Customer website Customer mobile app In-store 
point of sale app

Engagement 
applications

Logical business component

Exposed API

API invocation

Event stream
Chapter 6. Practical agile integration 369



� Event streams where they specifically need real-time notifications. 

� Event sourced local data stores where they need complete control over the availability and 
performance data access. 

In the practical example in this section we're going to consider the back-end of a mobile 
application ("back-end for front end" or BFF) that has a requirement for a local read-optimized 
data store for Product information. We're going to add a further requirement that it regularly 
needs to serve up pricing information alongside Product information. However, the pricing 
information lives in a separate back-end database. 

The BFF could of course retrieve the Product and Pricing information using two separate API 
calls to the respective components, as we did in the earlier example using 6.9.3, “Solution 
overview” on page 347. However, we can imagine the overall latency starting to escalate, not 
to mention the dependency on combined availability. Instead, we will introduce a new data 
store local to the BFF as shown in Figure 6-289, containing both Product and Pricing in 
exactly the form the BFF needs it. 

Figure 6-289   Consolidating event streams from multiple sources in order to create a combined 
read-optimized store. 

The mobile application team that implements the BFF will have ownership over that data 
store, so they can ensure it meets their availability needs. And they can ensure that the data 
is stored within it in the most optimized form for the type of queries they need to do. They can 
also change it at will, as they are the only ones using it. 

PRICING 
component

“Price Change” 
Event Stream

Customer 
mobile app

PRODUCT 
component

“Product Change” 
Event Stream

Read-optimized 
Datastore

Event 
Processing
(AC-IS)

Back end for 
front end (BFF)

Mobile App

Event stream

IBM App Connect
(Integration Server runtime)(AC-IS)

Logical business component
370 Accelerating Modernization with Agile Integration



Clearly we need to populate this data store and keep it in synchronization with the back-end 
systems. To do this we will listen to event streams from the back-end systems and translate 
these into our local data store. As per the title of this section, this is known as the "event 
sourced" pattern.

In this scenario we will implement the following features:

1. An IBM App Connect flow running in Integration Server will listen on two separate topics 
on IBM Event Streams.These topics inform about a change in quantity or price in the two 
back-end systems for Product and Price data. We will assume these were created in the 
way discussed in 6.7, “Create event stream from messaging” on page 322.

2. As soon as a change of product or price information is received the information will be 
picked by a flow in IBM App Connect.

3. Within IBM App Connect the data is merged into a schema that combines the two different 
schemas of the topics. This 'new' document is then pushed to the IBM Cloudant® 
database (noSQL).

The scenario has the following pattern:
The existing API’s read operation doesn't meet the increasingly demanding non-functional 
requirements around low-latency responses and high availability. This is because the reads 
are done on the back-end data store, which was not designed for the volumes of requests we 
are now seeing nor for the level of availability we require. Furthermore, there is a need to 
combine the back-end data with information from other sources too. 

To overcome this limitation and provide a good customer experience, the goal is to introduce 
a new API that provides the combined information much more responsively. As a result, the 
client’s non-functional requirements are met and they do not need to make multiple separate 
API requests.

We could create this new API by performing a composition across the two existing APIs as 
we did in the earlier example using IBM App Connect Designer in 6.9.3, “Solution overview” 
on page 347. However, as we will soon see, the solution to this requirement is more 
technically complex and requires more complex capabilities. So we will use the IBM App 
Connect runtime and Toolkit to perform the task. 

The challenge is that a simplistic composition of APIs would further reduce the response time 
and availability. Instead we will introduce a new data store local to the new API 
implementation. This will hold the combined data in exactly the form we need it. Therefore, it 
will be more performant, and we will have complete control over its availability.

Clearly we need to populate this data store and keep it in synchronization with the back-end 
systems. To to this, we will listen to event streams from the back-end systems and translate 
these into our local data store. As per the title of this section, this is known as the “event 
sourced” pattern.

This circles back to the basics of API management to think outside-in, or put another way, 
consumer first. The question to ask is "What would an App Developer need for his app and 
users?" rather than saying "We have service X, that provides data sets A,B and C and this is 
what we expose". This new API is heavily consumer focused, providing the best possible 
experience for a specific category of consumers using the API. 
Chapter 6. Practical agile integration 371



Figure 6-290   Event sourced API

What will be happening in the scenario that is shown in Figure 6-290 is:

1. IBM App Connect will listen on two separate topics on IBM Event Streams - these topics 
inform upon a change in quantity or price in the two back-end systems for Product and 
Price data. We will assume these were created in the way that is discussed in 6.7, “Create 
event stream from messaging” on page 322.

2. As soon as a change of product or price information is received the information will be 
picked by a flow in IBM App Connect.

3. Within IBM App Connect the data is merged into a schema that combines the two different 
schemas of the topics. This 'new' document is then pushed to the IBM Cloudant database 
(noSQL).

4. The content of the database can then be accessed via an API, which is ideally managed 
by API Connect to protect the database.

Figure 6-291 shows the data flow in this scenario.
372 Accelerating Modernization with Agile Integration



Figure 6-291   IBM App Connect data flow

6.10.3  How to do it? 

Let’s look at it in reverse order and start with the database.

The scenario described is created with IBM Cloudant Database leveraging this helm chart at 
https://github.com/maxgfr/ibm-cloudant

You are free to use any other database that meets your requirements.

The helm chart is installed on the same Kubernetes platform as the Cloud Pak for Integration 
for the purpose of illustrating this sample. The database could as well be on IBM Cloud 
(search for Cloudant in the IBM Cloud catalog https://cloud.ibm.com/catalog) or another 
NoSQL database on any other private or public cloud.

The IBM Cloudant database can be reached the IP and Port, which can be verified by calling 
the IP and Port. It is essential to get the networking part sorted, so this doesn't obstruct you in 
building the scenario. See Figure 6-292 on page 374.
Chapter 6. Practical agile integration 373

https://github.com/maxgfr/ibm-cloudant
https://cloud.ibm.com/catalog


Figure 6-292   Calling IBM Cloudant database

You will need a user and password to create a database on your IBM Cloudant instance.

Create a database via the Endpoint using the following API and operation:

PUT http://{endpoint}:{port}/$DATABASE?partitioned=false

For sake of simplicity in this book we are not partitioning the database.

You can refer to the Cloudant documentation for details 
https://cloud.ibm.com/docs/services/Cloudant?topic=cloudant-databases

6.10.4  Creating the flow in IBM App Connect

Create a Kafka Consumer in the IBM App Connect Toolkit.

Note: Cloudant is not prescriptive on what format your documents have that you put in. 
Any content and structure will be stored in the database. 
374 Accelerating Modernization with Agile Integration

https://cloud.ibm.com/docs/services/Cloudant?topic=cloudant-databases


Figure 6-293   Kafka Tutorial

To get this done there are two options:

� Use the tutorials where one tutorial is specifically to create a Kafka Consumer. See 
Figure 6-294. OR

Figure 6-294   Kafka Tutorial

� Follow this blog post: 

https://developer.ibm.com/integration/blog/2018/10/01/connecting-app-connect-en
terprise-and-ibm-integration-bus-to-ibm-event-streams 

where the second section is for IBM App Connect V11.
Chapter 6. Practical agile integration 375

https://developer.ibm.com/integration/blog/2018/10/01/connecting-app-connect-enterprise-and-ibm-integration-bus-to-ibm-event-streams
https://developer.ibm.com/integration/blog/2018/10/01/connecting-app-connect-enterprise-and-ibm-integration-bus-to-ibm-event-streams


Figure 6-295   Correction in server.conf.yaml 

A successful creation of the Kafka Consumer looks like this in the logs of the 
IntegrationServer that you can run from your IBM App Connect Toolkit. See Figure 6-296.

Figure 6-296   Kafka Consumer creation

If something is not complete or not working, you would see an error message like 
“'Kafka2Cloudant' encountered a failure and could not start.”

It is a good practice to use a File Output-Node at the beginning as a replacement for your 
database. Also, you should have a consumed message being written to the local file-system 
to verify the working of the consumers.

To test the consumption of events from IBM Event Streams it is easiest to create a starter 
application (as shown in Figure 6-297 on page 377 and Figure 6-296 on page 376).

Important: At the time of finalizing this document, there is a correction to be made. Of 
course, the truststore values in the server.conf.yaml must be uncommented and filled in. 
But also the keystore values must be uncommented and filled in, as shown in 
Figure 6-295, where password = the password of the truststore and es is the name of the 
IntegrationServer (the full path name is obfuscated).
376 Accelerating Modernization with Agile Integration



Figure 6-297   Test the consumption of events from IBM Event Streams -1
Chapter 6. Practical agile integration 377



Figure 6-298   Test the consumption of events from IBM Event Streams -2

Because a starter application can consume or produce events only in connection with one 
topic, two applications must be created.

6.10.5  Mapping the received events to the output required

To have a level of standardization it is recommended to follow a structure and combine the 
information from the product and price-events into one structure to insert it into the Database.

The common denominator between the price and the product information is the part-number. 
See Figure 6-299 on page 379.

IBMRedbooks
378 Accelerating Modernization with Agile Integration



Figure 6-299   The price and the product information 

The calling application that needs the information on a certain product would be calling for a 
product ID or "part_number" as it is named in the preceding samples.

It is worth knowing that Cloudant uses an ID on its own to search and identify documents. 
That ID can be overridden to be the same like the part_number, which saves a lot of work 
later on.

The new payload looks like Figure 6-300 - the schema chosen. 

Figure 6-300   The schema

The schema definitions for all three payloads need to be in the IBM App Connect project to be 
leveraged, for example in a message map. As before it is an easy approach to check the 
tutorial gallery of the IBM App Connect Toolkit for a sample as shown in Figure 6-301 on 
page 380.

Note: Be aware of capabilities of the database that can improved life for you and the API 
consumer (for example, the app developer).
Chapter 6. Practical agile integration 379



Figure 6-301   Schema definitions

6.10.6  Sending the new payload to the database 

Cloudant provides two ways to update entries:

� Via the loopback connector

� Via a REST API

The loopback connector is the recommended approach, as it provides you with the 
mechanisms to update entries in the database. In contrast, the REST API requires a search 
for an item with the _id that equals the part_number. Then it maps that to a new payload in a 
POST request that also contains the revision information (with the flag _rev). Otherwise, a 
POST operation fails for a CouchDB / CloudantDB. See Figure 6-302.

Figure 6-302   IBM App Connect flow - update db

After all is done, deploy the flow onto your Integration Server and create events using the 
starter applications of IBM Event Streams.

After these events have been consumed and pushed to your database, you will be able to 
search for the product by leveraging _id (which is the part_number).
380 Accelerating Modernization with Agile Integration



6.10.7  Client applications

As shown in Figure 6-303, the data is now in our Cloudant database and can be called by any 
application that uses the combined data sets.

Figure 6-303   the data is in our Cloudant database

6.11  REST and GraphQL based APIs

When building out a consumer-focused API such as the one in the previous section, we need 
to ensure we offer the best possible experience for the users of the API. The API is after all a 
product, and we want it to be appealing for first time users, and also “sticky.” In other words, 
we want the consumers to continue to use it long into the future. 

Therefore, we need to ensure we provide an API that is well suited to the consumer channel 
we are targeting, which may well mean embracing different styles of API exposure. In this 
section we will explore an alternative style of API known as GraphQL, which has subtle, but 
important differences from the more common RESTful style.

REST or (Representational State Transfer) is an architectural style of building a defined set of 
operations for the interface (Web Service). It is used to send data over HTTP. It is known by 
its simplicity of using the underlying HTTP verbs, for example GET, POST, PUT and DELETE. 
It is the most common API exposure style in use today.

Note: Procedures for updating data in a database vary, so there might be different 
approaches that you can take.
Chapter 6. Practical agile integration 381



GraphQL is a new architectural style for building an API that was mainly developed to 
overcome some of the architectural limitations of the RESTful APIs.

There are two key limitations in RESTful interfaces that GraphQL addresses:

� Data relationships. RESTful APIs are very granular. You must retrieve each type of data 
resource separately. An example would be an author and her books. One author may 
have more than one book. The authors are retrieved separately to the books. To get the 
books of each author, you must first call the author API, then you will retrieve each 
author’s book using another separate API call. Furthermore, the two separately retrieved 
data models may then need to be combined by the caller. So, we need to do multiple 
invocations, and we had to then merge the data together ourselves. 

� Data filters. In REST API you always get the full payload in the response. In our example, 
you get all the data fields about the author or the particular book. This is known as over 
fetching. What if you need only part of the response? Perhaps you only needed to know 
the “titles” of the author’s books, but not the rest of the book information? This can be 
critical where resource data payloads are large and they are going over low-bandwidth 
connections - the typical reality for a mobile application for example. This filtering aspect 
also applies to being able to perform more complex queries on the lists we retrieve such 
that we do not bring back all the records in a list. For example what if we only wanted to 
retrieve books published before 1997.

Figure 6-304 shows the REST API flow.

Figure 6-304   REST API flow

To overcome these limitations, we have seen different projects in the market such as OData 
(Open Data Protocol), GraphQL, and the LoopBack framework. In this document, we focus 
on GraphQL because its popularity is growing rapidly.

It is important to note that GraphQL is not a REST API replacement, it is only an alternative. 
REST and GraphQL often co-exist in the same project depending on the type of interfaces 
exposed.

API
Authors{

"id": 1,
"authorName": "KIM CLARK",
"authorEmail": "kim.clark@uk.ibm.com",
"authorBio": "Kim is a technical strategist on IBMs integration portfolio ..."

}

API
Books{

"id": 10,
"authorId": 1,
"bookName": "Integration Modernization: A practical guide to an agile integration architecture",
"bookReleaseYear": “2019"

}

382 Accelerating Modernization with Agile Integration



However, we will first explore the open source LoopBack project, which is integrated with IBM 
API Connect. We previously mentioned Loopback as an alternative to GraphQL, because it 
does indeed provide a convention for API exposure that resolves the REST limitations noted 
above. However, Loopback is more than that. LoopBack is a Node.js based framework that 
provides a way to rapidly create a REST API implementation from a data source. We will use 
this in our example to create a sample REST API. We can then briefly explore how the 
LoopBack augmentations to REST enable GraphQL-like interaction. Finally, we will show how 
we can place a Wrapper around our Loopback-based REST API (or indeed any Open API 
Specification based API) to convert it into GraphQL.

6.11.1  IBM, GraphQL, and Loopback

IBM has a strong commitment to open source. We are an active member of the GraphQL 
community, and the original creator of the now open source “OpenAPI-to-GraphQL” project 
used at the end of this section.

“We are pleased to join the new GraphQL Foundation as a founding member to help drive 
greater open source innovation and adoption of this important data access language and 
runtime for APIs.” – Juan Carlos Soto, VP Hybrid Cloud Integration and API Economy, IBM.

IBM is also the owner and primary contributor to the open source LoopBack framework used 
in this example to rapidly create API implementations.

6.11.2  LoopBack models and relationships

LoopBack is a highly extensible, open-source Node.js framework based on Express that 
enables you to quickly create APIs and microservices that are composed from back-end 
systems such as databases and SOAP or REST services.

Individual models are easy to understand and work with. But in reality, models are often 
connected or related. When you build a real-world application with multiple models, you’ll 
typically need to define relations between models. For example:

– A customer has many orders and each order is owned by a customer.

– A user can be assigned to one or more roles and a role can have zero or more users.

– A physician takes care of many patients through appointments. A patient can see 
many physicians too.

With connected models, LoopBack exposes as a set of APIs to interact with each of the 
model instances and query and filter the information based on the client’s needs.

You can define the following relationships (called relations in LoopBack) between models:

– BelongsTo 

– HasOne 

– HasMany 

– HasManyThrough 

– HasAndBelongsToMany 

– Polymorphic 

– Embedded (embedsOne and embedsMany)
Chapter 6. Practical agile integration 383



One of the most useful LoopBack capabilities is that it has an automated build wizard to 
connect to different databases, create the model’s relationships, and perform filtering that is 
similar to the GraphQL. Figure 6-305 on page 384 shows LoopBack and GraphQL.

Figure 6-305   LoopBack and GraphQL

A key difference between LoopBack and GraphQL is that LoopBack uses the URL to specify 
the relations and the filters. In contrast, GraphQL puts that as part of the payload body as 
shown in Figure 6-306.

Figure 6-306   LoopBack REST API mapping to GraphQL

API/Database
Authors Data Source

Server

API/Database
Books Data Source

API/Database
Authors Data Source

App

API/Database
Books Data Source

Dy
na

m
ic

 In
te

rf
ac

es
St

at
ic

 In
te

rf
ac

es

/RedbookAuthors?
filter[fields][id]=true

& filter[fields][AuthorName]=true
384 Accelerating Modernization with Agile Integration



We will now:

1. See the creation of an API implementation using the IBM API Connect LoopBack 
framework and test the out-of-the-box filters, relations and model creation that LoopBack 
provides.

2. Create a GraphQL wrapper to expose the created loopback REST API as a GraphQL 
service.

LoopBack REST API creation
Let’s start by creating the LoopBack application that exposes a data source as an API and 
feeds it with sample data, and then try some of the filters and database join (model relation).

Prerequisites:

1. Install NPM using the NodeJS installer from (https://nodejs.org/en/download/)

2. Install API Connect CLI that has the LoopBack framework out-of-the-box from IBM fix 
central 
(https://www-945.ibm.com/support/fixcentral/swg/selectFixes?parent=ibm~WebSpher
e&product=ibm/WebSphere/IBM+API+Connect&platform=All&function=all)

Having the LoopBack framework embedded with IBM API Connect is an advantage. It 
enables the developers to develop APIs and microservices faster and deploy it to IBM Public 
Cloud or OpenShift.

To further understand the database relation that we are aiming for, see Figure 6-307.

Figure 6-307   Entity relationship diagram

Creating the application with LoopBack is simple and straight forward and can be done in five 
steps:

1. Create the LoopBack application.

2. Define the data source.

3. Create the Authors and Books models.

4. Create the model’s relations.

5. Test the API using LoopBack embedded explorer.

Note: You may also use the open source LoopBack framework available at 
https://loopback.io/doc/en/lb4/Getting-started.html.
Chapter 6. Practical agile integration 385

https://www-945.ibm.com/support/fixcentral/swg/selectFixes?parent=ibm~WebSphere&product=ibm/WebSphere/IBM+API+Connect&platform=All&function=all)
https://www-945.ibm.com/support/fixcentral/swg/selectFixes?parent=ibm~WebSphere&product=ibm/WebSphere/IBM+API+Connect&platform=All&function=all)
https://nodejs.org/en/download/
https://loopback.io/doc/en/lb4/Getting-started.html)


Create the LoopBack application
Perform the following steps:

1. Type in the command in Example 6-8

Example 6-8   Creating the LoopBack application 1 

apic lb app

2. Enter the details to the wizard as Example 6-9.

Example 6-9   Creating the LoopBack application 2 

? What's the name of your application? RedbookApp
? Enter name of the directory to contain the project: RedbookApp
? What kind of application do you have in mind? empty-server (An empty LoopBack 
API, without any configured models or datasources)

3. This will create a new directory called “RedbookApp” that contains all the application data.

Navigate to the folder using the following command in Example 6-10 on page 386.

Example 6-10   Creating the LoopBack application 3

cd RedbookApp

Define the data source
We will define an in-memory data source which will allow us to use the file system folders as 
a data repository. See Example 6-11 shows the command and Example 6-12 on page 386 
shows the output. 

Example 6-11   Defining the data source 1

apic lb datasource

Example 6-12   Defining the data source 2

? Enter the datasource name: memorydb
? Select the connector for memorydb: In-memory db (supported by StrongLoop)
? window.localStorage key to use for persistence (browser only):<Leave Blank>
? Full path to file for persistence (server only): mydata.json

Create authors and books models
Perform the following steps:

1. To create a model using the LoopBack framework type the following command as shown 
in Example 6-13. 

Example 6-13   Defining the data source 3

apic lb model

2. Use Example 6-14 to answer the wizard for creating the Author model. 

Example 6-14   Defining the data source 4

? Enter the model name: Author
? Select the datasource to attach Author to: memorydb (memory)
? Select model's base class PersistedModel
? Expose Author via the REST API? Yes
386 Accelerating Modernization with Agile Integration



? Custom plural form (used to build REST URL):<Leave Blank>
? Common model or server only? common
Let's add some Author properties now.

Enter an empty property name when done.
? Property name: authorName
   invoke   loopback:property
? Property type: string
? Required? Yes
? Default value[leave blank for none]: <Leave Blank> or Use your name

Let's add another Author property.
Enter an empty property name when done.
? Property name: authorEmail
   invoke   loopback:property
? Property type: string
? Required? No
? Default value[leave blank for none]: <Leave Blank> or Use your email

Let's add another Author property.
Enter an empty property name when done.
? Property name: authorBio
   invoke   loopback:property
? Property type: string
? Required? No
? Default value[leave blank for none]:<Leave Blank>

Let's add another Author property.
Enter an empty property name when done.
? Property name:<Press Enter to Exit the Wizard>

3. Use Example 6-15 to answer the wizard for creating the Book model.

Example 6-15   Defining the data source 5

? Enter the model name: Book
? Select the datasource to attach Book to: memorydb (memory)
? Select model's base class PersistedModel
? Expose Book via the REST API? Yes
? Custom plural form (used to build REST URL):
? Common model or server only? common
Let's add some Book properties now.

Enter an empty property name when done.
? Property name: authorId
   invoke   loopback:property
? Property type: number
? Required? Yes
? Default value[leave blank for none]:<Leave Blank>

Let's add another Book property.
Enter an empty property name when done.
? Property name: bookName
   invoke   loopback:property
? Property type: string
Chapter 6. Practical agile integration 387



? Required? Yes
? Default value[leave blank for none]: <Leave Blank>

Let's add another Book property.
Enter an empty property name when done.
? Property name: bookReleaseYear
   invoke   loopback:property
? Property type: string
? Required? No
? Default value[leave blank for none]: 2019

Let's add another Book property.
Enter an empty property name when done.
? Property name:<Press Enter to Exit the Wizard>

Now you have created two models. Next let us create the relation between the two 
models.

Create the model relation
1. Start by the following command in Example 6-16 to create a model relation. 

Example 6-16   Creating the model relation 1

apic lb relation

2. Use Example 6-17 to create the model relation.

Example 6-17   Creating the model relation 2

? Select the model to create the relationship from: Author
? Relation type: has many
? Choose a model to create a relationship with: Book
? Enter the property name for the relation: (books) books
? Optionally enter a custom foreign key: authorId
? Require a through model? No
? Allow the relation to be nested in REST APIs: No
? Disable the relation from being included: No

Testing the API
Now that we have created the app, data source, model, and relations, let us test the API.

1. To run the application on your local host type as in Example 6-18.

Example 6-18   Testing the API 1

node .

2. You will get the localhost url to access the API Explorer. See Example 6-19.

Example 6-19   Testing the API 2

Web server listening at: http://localhost:3010
Browse your REST API at http://localhost:3010/explorer

3. The API Explorer is an embedded testing that allows you to test your application during 
development. Use your browser to access the LoopBack API Explorer as shown in 
Figure 6-308 on page 389.
388 Accelerating Modernization with Agile Integration



Figure 6-308   LoopBack API Explorer

4. You can test your APIs now using the explorer. However, we don’t have any data on the 
local store, so let’s add some data. Click POST operation and complete the fields as 
shown in Example 6-20.

Example 6-20   Testing the API 3

{
 "authorName":"Kim Clark",
 "authorEmail":"kim.clark@uk.ibm.com",
 "authorBio":"Kim is a technical strategist on IBMs integration portfolio..."
}

5. Then click Try it out! as shown in Figure 6-309 on page 390.
Chapter 6. Practical agile integration 389



Figure 6-309   Testing the API 4

6. You see the 200 successful operation message. See Figure 6-310 on page 391.
390 Accelerating Modernization with Agile Integration



Figure 6-310   Testing the API 5

7. After the first successful POST, you can check the local storage file on the same 
application directory that was created during the data source creation step (mydata.json) 
See Figure 6-311.

Figure 6-311   Testing the API 6

8. You can also copy and paste the following Example 6-21 if you want to add the data 
without using the API Explorer.
Chapter 6. Practical agile integration 391



Example 6-21   Sample data

{
  "ids": {
    "Author": 2,
    "Book": 4
  },
  "models": {
    "Author": {
      "1": "{\"id\":1,\"authorName\":\"Mohammed 
Alreedi\",\"authorEmail\":\"malreedi@sa.ibm.com\",\"authorBio\":\"Mohammed Alreedi 
is the MEA Technical Integration Leader\"}",
      "2": "{\"id\":2,\"authorName\":\"Kim 
Clark\",\"authorEmail\":\"kim.clark@uk.ibm.com\",\"authorBio\":\"Kim is a 
technical strategist on IBMs integration portfolio...\"}"
      
    },
    "Book": {
      "1": 
"{\"authorId\":2,\"bookName\":\"IBMRedbooks1\",\"bookReleaseYear\":\"2017\",\"id\"
:1}",
      "2": 
"{\"authorId\":1,\"bookName\":\"IBMRedbooks2\",\"bookReleaseYear\":\"2018\",\"id\"
:2}",
      "3": 
"{\"authorId\":2,\"bookName\":\"IBMRedbooks3\",\"bookReleaseYear\":\"2019\",\"id\"
:3}"
    }
  }
}

9. After the server restart, you can test the GET operation and check the result. See 
Figure 6-312 on page 393.

Note: You must restart the server to pick-up the modified mydata.json file.
392 Accelerating Modernization with Agile Integration



Figure 6-312   Testing the API 6

LoopBack join and filters
In section “LoopBack REST API creation” on page 385 we have created a model relation 
which is basically a data join. To demonstrate this let’s take an example of retrieving all the 
author books.

You see an API created out-of-the-box to get the books based on an authorId. Let’s try to use 
that.

1. Click GET /Authors/{id}/books. Enter 1 for the ID, then click Try it out! See Figure 6-313 
on page 394.
Chapter 6. Practical agile integration 393



Figure 6-313   Testing the API 7

2. You can also test the same from any external tool or even the web-browser. To do that, 
use the link in Example 6-22. 

Example 6-22   API testing link

http://localhost:3010/api/Authors

Figure 6-314 shows the API testing result.

Figure 6-314   API testing result

3. Next is filters. Filters specify criteria for the returned data set. LoopBack supports the 
following kinds of filters:

Note: Do not forget to change the port if you have a different server port.
394 Accelerating Modernization with Agile Integration



– Fields filter

– Include filter

– Limit filter

– Order filter

– Skip filter

– Where filter

More information about filters can be found here:

https://loopback.io/doc/en/lb3/Querying-data.html

Let’s try some filters such as applying a filter to show only authorName.

4. Open your browser and type the string that you see in Example 6-23.

Example 6-23   API testing link with filters 1

http://localhost:3010/api/Authors?filter[fields][authorName]=true

This will retrieve only the name of all authors. See Figure 6-315.

Figure 6-315   API testing link with filters 2

5. Another filter that can be used is the where filter, based on a specific goal like finding all 
books that were released after 2017.

Example 6-24   API testing link with filters 2

http://localhost:3010/api/Books?filter[where][bookReleaseYear][gt]=2017

Figure 6-316 shows the API testing result.

Figure 6-316   API testing result

6. You can also combine two filters together as seen in Example 6-25.

Example 6-25   API testing link with filters 3

http://localhost:3010/api/Books?filter[where][bookReleaseYear][gt]=2017&filter[fie
lds][bookName]=true

Figure 6-317 on page 395 shows the result.

Figure 6-317   API testing result
Chapter 6. Practical agile integration 395

https://loopback.io/doc/en/lb3/Querying-data.html)


Generate GraphQL out of OAS based API

Perform the following steps:

1. OpenAPI-to-GraphQL can be used either as a library, or via its Command Line Interface 
(CLI) to quickly get started. To install the OpenAPI-to-GraphQL CLI, run the indicated 
command Example 6-26.

Example 6-26   Generating the graphql API 1

npm i -g openapi-to-graphql-cli

2. OpenAPI-to-GraphQL relies on the OpenAPI Specification (OAS) of an existing API to 
create a GraphQL interface around that API.

3. To create a GraphQL wrapper, first download the open api definition or swagger, use the 
following link in the browser

Example 6-27   Download the swagger.json link

http://localhost:3010/explorer/swagger.json

4. Save the swagger.json to your local disk, name it RedbookAppDef.json, and then add the 
following server IP address at the end of the “RedbookAppDef.json” file. 

Example 6-28   Adding the server url in the swagger.json

,
    "servers": [
    {
      "url": "http://localhost:3010/api/"
    }
  ]

The file end should look like Figure 6-318.

Note: if you are using LoopBack V4, you will use openapi.json instead of swagger.json.
396 Accelerating Modernization with Agile Integration



Figure 6-318   The file after adding the server url

5. Make sure your LoopBack application is running because the GraphQL service that we 
are creating is only a wrapper to the created LoopBack API. 

6. After OpenAPI-to-GraphQL is installed and the OAS/Swagger is obtained, you can create 
and start the GraphQL server from the folder in which OpenAPI-to-GraphQL is installed.

Run the following comment shown in Example 6-29.

Example 6-29   Run the graphql server

openapi-to-graphql RedbookAppDef.json

Figure 6-319 shows the command output.

Figure 6-319   Command output
Chapter 6. Practical agile integration 397



Now you can access the GraphQL interface using the URL 
http://localhost:3000/graphql

7. Open your browser and navigate to the above URL. Use the following query to retrieve all 
the authors.

Example 6-30   GraphQL query example 1

query{
  authors{
    authorName
    authorEmail
    authorBio
  }
}

Figure 6-320 shows the result of the query.

Figure 6-320   GraphQL query result

With that we have concluded the GraphQL wrapper creation which will give us the ability to 
build a GraphQL API based on a RESTful API.

6.12  API testing

A key element to cloud native based agile delivery is automation. How else could you reduce 
the code to production cycle time? But of course we must also retain quality, so an essential 
part of that automation is test automation. We need to be able to rapidly capture, and amend 
test cases that we want to include in our pipeline processes. 

This section covers the specific step-by-step implementation of the creation and maintenance 
of an API test. There is a broader discussion on API testing strategy in 6.5.5, “API testing” on 
page 268.

For the implementation of the scenario, IBM API Test and Monitor on IBM Cloud is used. 

API Test and Monitor provides the following three options to create and update test cases:

� Create from an API request. In this option, the test is generated automatically from the 
response that’s returned from the endpoint.
398 Accelerating Modernization with Agile Integration



� Create from an existing specification file. In this option, you are not dependent on the 
completion of the API development or connectivity, having the specification file will be 
sufficient to generate the test cases. 

� Create using the visual or code test editor. This option gives you the flexibility to build or 
update your test assertions with a visual or code editor at any phase of your API project. 
Especially if you adopt test driven requirements approach your test cases will directly 
reflect, eventually your test cases will trace to the API definition and implementation.

In this scenario, you are going to combine all three approaches.

6.12.1  Create a test from an API request

This is the simplest way to create a test. Most of the work is done for you by generating the 
test artifacts based on an example invocation of the API. Complete the following steps to 
create a test from an API request:

1. Log in IBM API Connect Test and Monitor from the following page 
(https://ibm.biz/apitest) as shown in Figure 6-321.

Figure 6-321   API Test and Monitor Login page

2. Open HTTP Client as shown in Figure 6-322 on page 400.
Chapter 6. Practical agile integration 399

https://ibm-apiconnect.github.io/test-and-monitor/


Figure 6-322   Open HTTP Client 

3. Configure and send an API test request as shown in Figure 6-323.

a. In the upper left section of the HTTP Client, select the type of request (GET, POST, 
PUT, PATCH and DELETE) that you want from the drop-down menu. 

b. Complete the Request url field with the API endpoint URL.

c. Click Params icon if it requires to add parameters to the API endpoint URL.

d. Select the Headers tab to supply request HTTP headers.

e. Select Body tab to configure the request body.

f. Click Send in the upper section of the HTTP Client. The response from the endpoint is 
displayed in the lower section of the page. 

Figure 6-323   Calling an API using HTTP Client

4. Click Generate Test icon as shown in Figure 6-324.
400 Accelerating Modernization with Agile Integration



Figure 6-324   Generate Test

a. Generate Test window pops up. Enter the name of the test to be generated. From the 
Save to Project drop-down menu, select a project name, or select Create new 
project to create your own project. Click the Confirm icon to save the test and start 
the test generation as shown in Figure 6-325.

Figure 6-325   Generate Test and the Project

b. After test generation is complete, the All set! page is displayed. Click Close to 
continue as shown in Figure 6-326 on page 401.

Figure 6-326   Confirmation of Test generation

5. You are now in the test editor, called the Composer. In the Composer you can view all the 
assertions that are generated automatically as shown in Figure 6-327. Click Save and 
exit.
Chapter 6. Practical agile integration 401



Figure 6-327   Test Composer 

Figure 6-328   Test Code editor

So far you have created a test from an existing API request. 

Note: The test can be edited by using either the code (text) editor, or the visual (graphical) 
editor. Toggle between these two editors by clicking the CODE and VISUAL tabs in the 
upper right of the Composer. The visual editor is the default editor. The code editor is 
shown in Figure 6-328 on page 402.
402 Accelerating Modernization with Agile Integration



6.12.2  Update the test case from a Swagger file and publish

Generally, APIs are developed in a more agile manner, as the requirements for APIs evolves 
rapidly. Therefore, updating the test cases for APIs quickly and easily is essential to keep up 
with chase of agile development approaches. So let us say if the API definition is amended 
with a new data model or operation, you don’t need to re-create the tests from scratch. You 
simply need to enrich the test case with the new API definition as shown in this section. 
Complete the following steps to update the test case with a Swagger file:

1. Navigate to Tests page, a list of the tests that have been created in the project are 
displayed. Click Edit icon to update the draft test as shown in Figure 6-329.

Figure 6-329   Test page

2. Test editor page opens. Click Build from SPEC icon to update the test case as shown in 
Figure 6-330.

Figure 6-330   Build from SPEC

3. Upload the spec file and click Save icon as shown in Figure 6-331 on page 404.
Chapter 6. Practical agile integration 403



Figure 6-331   Upload the spec file

4. Select the API operation from the drop-down box and click Merge icon to amend the 
changes as shown in the next figure. Test Composer page opens.

Figure 6-332   Build from SPEC options

You can repeat this step to merge more operations exposed by the API into the existing 
test case.

5. Expand the Data Sets panel from the left and add a new global parameter for test data. 
When the test was generated, it extracted the values that you provided into a variable as 
shown in Figure 6-333 on page 405.
404 Accelerating Modernization with Agile Integration



Figure 6-333   Global Data Sets

6. Rearrange the test components to be executed in the correct order. As shown in 
Figure 6-334 on page 405, you first inject a test data, then update and retrieve it, and lastly 
you delete it.

Figure 6-334   Test execution order

7. Click Run Test icon to confirm that it works correctly as shown in Figure 6-335. 
Chapter 6. Practical agile integration 405



Figure 6-335   Run the test

a. If there was an error, the test report that is generated can help you diagnose the error. 
An example error report as shown in Figure 6-336 on page 406.

Figure 6-336   Error Report example 

b. If the test passes, the test report generated would again show the details of each 
execution step.

8. After you have completed the configuration of your test, click the Publish icon to publish 
the test as shown in Figure 6-337 on page 407.
406 Accelerating Modernization with Agile Integration



Figure 6-337   Publish Test

9. Afterthe test is published, you can navigate to Tests page and click the Run icon to trigger 
the test as shown in Figure 6-338 on page 408. 

Note: You need to publish a test to be able to schedule it to run automatically. After you 
have published a test, you can continue to work on the test in the Composer without 
affecting the published test. Later, you can publish the test again to update the test that you 
previously published. 
Chapter 6. Practical agile integration 407



Figure 6-338   Tests page

6.12.3  Gain insights into API quality

Dissemination of test results with the interested parties and having historical and comparable 
view on the test data is as important as performing the test itself. Without the key 
understanding of the test results, any effort to fix the defects would be pointless. IBM API Test 
and Monitor provides a dashboard to view all the individual test run results. That way, you can 
use the failure cases as the basis of diagnosis. Also it generates functional and performance 
test reports to give you insight into quality over time. Follow these instructions to view test 
results and API quality reports:

1. Navigate to Dashboard page to view test results. Dashboard provides three different 
views to analyze your test results: 

Logs View show the status of the test runs where you can add filters based on timeframe, 
tag, location, and success/failure. You can also reach the test report of each individual test 
case and share the results with a wider audience.

a. Select the Logs View as shown in Figure 6-339 on page 408.

Figure 6-339   Test logs

b. Metric View shows the footprint of individual test requests for the selected timeframe, 
endpoint, and location. Select the Metrics view as shown in Figure 6-340.
408 Accelerating Modernization with Agile Integration



Figure 6-340   Test metrics

c. Availability View shows the availability details of the API Endpoints for selected 
timeframe and location. Select the Availability view as shown in Figure 6-341 on 
page 409.

Figure 6-341   Test availability 

2. Data on API quality can be used as an indicator of API consumption. Analyze the uptime, 
performance, and failures of the API based on all the test runs to gain actionable insights 
and diagnose errors. Navigate to API Quality page to view the functional and 
performance reports.

a. Select Functional view as shown in Figure 6-342 on page 410.
Chapter 6. Practical agile integration 409



Figure 6-342   API Quality Functional view

b. Select Performance view as shown in Figure 6-343.

Figure 6-343   API Quality Performance view

6.13  Large file movement using the claim check pattern

A messaging-based architecture, at some point, must be able to send, receive, and 
manipulate large messages. Such messages may contain anything, including images (for 
example, video), sound files (for example, call-center calls), text documents, or any kind of 
binary data of arbitrary size.

Sending such large messages to the message bus directly is not recommended, because 
large messages can also slow down the entire solution. Also, messaging platforms are 
usually fine-tuned to handle huge quantities of small messages. Finally, many messaging 
platforms have limits on message size, so you may need to work around these limits for large 
messages.

The claim check pattern is used to store message data in a persistent store and pass a Claim 
Check to subsequent components. These components can use the Claim Check to retrieve 
the stored information. For a real-world example of this, think of flight travel. When you check 
your luggage, you receive a claim check. When you reach your destination, you hand in only 
the claim check with which you can reclaim your luggage. 

In this scenario we will be implementing a claim check pattern for the sending and receiving 
of a large file. Basically, this pattern means splitting a large message into a claim check and a 
payload. The claim check is sent to the messaging platform (in this case IBM App Connect) 
and the payload is stored by an external service (in this case IBM Aspera on Cloud). 
410 Accelerating Modernization with Agile Integration



6.13.1  Build the file transfer

As mentioned, for the file transfer portion of this scenario we will use IBM Aspera on Cloud. 
IBM Aspera on Cloud enables fast, easy, and secure exchange of files and folders of any size 
between end users, even across separate organizations, in both local and remote locations. 
Importantly for our scenario, using the Aspera on Cloud service means that the recipient of 
the file does not need to be running an Aspera Transfer Server, but is sent a link with which to 
retrieve the file they have been sent in an email-like workflow. This link will form the basis of 
our claim check.

Sign up for a free trial
Perform the following steps:

1. If want to build this scenario for yourself, you will need to sign-up for a free trial of IBM 
Aspera on Cloud. Use this following link and sign up for the free trial:

https://www.ibm.com/cloud/aspera

See Figure 6-344.

Figure 6-344   Sign up for trial

2. After you have received your notification, log on and follow the instructions to download 
and install IBM Aspera Connect (This will allow transfer of files via the browser interface). 
See Figure 6-345.
Chapter 6. Practical agile integration 411

https://www.ibm.com/cloud/aspera
https://www.ibm.com/cloud/aspera


Figure 6-345   Install IBM Aspera Connect

3. After this has been completed you will see the home page. Here, you may select which of 
the apps you want to be your permanent landing area (For this scenario we chose Files). 
See Figure 6-346.

Figure 6-346   Choose a default app

4. To navigate between one app and another, click the box of dots in the upper right of the 
screen. See Figure 6-347 on page 412.

Figure 6-347   Navigation
412 Accelerating Modernization with Agile Integration



As shown in Figure 6-348, this will show the apps that you have access to. 

Figure 6-348   Apps

5. Select the Admin app and on the left side, select the Workspaces section. For our 
scenarios we will create a new workspace. The workspace is a collaborative arena for 
those working together, on a given project, for example, or perhaps in a department or 
division.

The workspace also acts as a security realm. Workspace members can send and share 
content freely to and with members of the same workspace. For our simple example, we 
could simply use the Default Workspace, but let us create one for the book.

6. Select Create new.

Figure 6-349   Create new workspace

7. We need to give the workspace and name (IBM Redbooks) and if you like, upload a logo 
for the workspace (we have used the IBM Redbooks logo). You will also see the default 
node that the files will be stored in (do not change this). See Figure 6-350.
Chapter 6. Practical agile integration 413



Figure 6-350   Redbooks workspace

8. Click the Applications tab and ensure that the Files and Packages are shown as active.

In the Packages app, a package (also called a digital package) is a collection of digital 
assets (such as files, folders, video, images). You gather them to send to one or more 
individuals or user groups, or to an Aspera on Cloud shared inbox. You can also attach 
files and folders in your Files app as you create a digital package in the Packages app. 
Simply right-click the items in your Files app to include in the package and select the 
option to send. You can add content to a package you initiate from the Files app. See 
Figure 6-351.

In our scenario we will be sending only a single file through the File application.

Figure 6-351   Applications

9. Now click the Settings tab. We will not be changing any of the settings but there is one 
here that we need to take notice of for later in the scenario. See Figure 6-352.
414 Accelerating Modernization with Agile Integration



Figure 6-352   Settings

10.Click Email Settings and Templates. Notice that the Subject prefix is IBMAsperaOnCloud. 
This will come into play in the event flow part of the scenario. See Figure 6-353.

Figure 6-353   Email templates

11.Using the navigator, move to the Files application. Click the IBM Redbooks workspace. 
See Figure 6-354 on page 415.

Figure 6-354   Files and workspaces

12.We will create a folder to contain our files for transfer. Click Create Folder. Enter a name 
for the new folder (we chose forTransfer). See Figure 6-355.
Chapter 6. Practical agile integration 415



Figure 6-355   New folder

We are now ready to upload the file and send it to the recipient.

Upload a file
Perform the following steps to upload a file:

1. Click New folder to open it.

2. Select Upload → Files. See Figure 6-356.

Figure 6-356   Upload files

3. This will open a pop-up window (Figure 6-357 on page 417), where you can select the file 
to be transferred. Which file that you decide send in not important for this scenario, but a 
file of a decent size would be ideal. 

Tip: If you are using a Mac, you may find that the window to select the file is in the 
background.
416 Accelerating Modernization with Agile Integration



Figure 6-357   Select a file to upload

4. The upper right area of Figure 6-358 shows that there is one active transfer. (This is your 
upload.)

Figure 6-358   Active transfer

5. Click the Transfer icon to see the current progress of the upload.

We can see the activity of the upload by clicking the dotted box again and selecting 
Activity.

On this dashboard we see information about all of the transfer, but specifically the current 
transfer in progress.

Tabs on the left side of this dashboard provide good information for our scenario regarding 
volume usage and file access available. See Figure 6-359 on page 418.
Chapter 6. Practical agile integration 417



Figure 6-359   Upload transfer activity

6. Go back to the Files application. Click the IBM Redbooks workspace and drill down to the 
current file to see the progress. After the file has been successfully uploaded, you can see 
the various options available for processing of this file. See Figure 6-360.

Figure 6-360   Options for the file

We are now ready to send the file to the intended recipient.

Send a file
If this scenario, we send the file to a Gmail address. We plan to use the Gmail application 
connector in IBM App Connect in the next part of the scenario.

If you want to build the second half of the scenario but do not have a Gmail account, get one 
now.

1. Using the options menu that was shown earlier, select Send.

A pop-up window will appear where the details of the file and recipient are to be entered.
418 Accelerating Modernization with Agile Integration



2. Enter the Gmail address of the intended recipient, add a subject that will let the recipient 
know what has been sent. As shown in Figure 6-361 the file should already be listed there.

3. Optionally, you can add a message for the recipient (in our scenario, we added a message 
to remind the recipient that the file is large). Part of the claim-check pattern means that the 
recipient is alerted to the arrival of the file (that is, they receive the claim check). However, 
it may not be the most suitable time for them to download such a large file. They may want 
to process the file at a more appropriate time.

4. Additionally, you can choose to password protect the file (if it contains sensitive 
information) and request that someone is notified if the package is available and/or 
downloaded). These are in the Options section, but we will not be using them for our 
scenario. 

Figure 6-361   Send the file

5. Click Send.

6. If we now view the Activity monitor again (via the indicator in the upper section of the 
screen), we see that the file transfer is being processed. See Figure 6-362 on page 420.

Tip: If you select the wrong file and the file is not the one you intended, simply remove 
that file (using the x) and drag and drop the correct file from the list of uploaded files.
Chapter 6. Practical agile integration 419



Figure 6-362   File transfer being processed

When the transfer has been completed, we will see an email in the inbox of the recipient.

6.13.2  Build an event-driven flow

In this part of the scenario we will be using IBM App Connect. For many people, simply going 
and reading email periodically may be a standard way to work. However, as you build out 
your new digital infrastructure to respond to ever-changing customer demands, you need to 
be able to capture new events, contextually and in near real time. By orchestrating the right 
follow on actions through workflows, you immediately react to new events. In this way, you 
ensure that your customers and employees have a positive experience.

IBM App Connect allows you to utilize smart connectors to capture events from your systems 
designed on event-driven architectures. Unique capability and situational tooling then 
empowers your teams that have the context to apply such data. These teams can rapidly 
build and change integrations as their needs shift, enabling the business to move at the 
speed of its customers.

Imagine that the file that we sent in 6.13.1, “Build the file transfer” on page 411 was an urgent 
file that is required to resolve a customer situation. It would be ideal if the customer service 
representative could automatically be alerted to the fact that the file has arrived and could 
immediately take respond.

Sign up for a free trial
In this part of the scenario we will be utilizing two of the smart connectors in IBM App 
Connect. As you will have read previously, there are over 100 to choose from.
420 Accelerating Modernization with Agile Integration



If you have not already done so, sign-up for a free trial on the IBM Cloud.

In 6.13.1, “Build the file transfer” on page 411, you signed up for a Gmail account. You also 
need to sign up for a Slack trial account if you do not already have one.

Slack is a collaboration hub where you and your team can work together to get things done.

You can sign-up for a trial account here: 

https://slack.com

You will need to define the following elements: 

� Slack workspace:
A workspace is a shared hub made up of channels, where team members can 
communicate and work together.

� Slack channel:
In Slack, work happens in channels. You can create channels based on teams, projects or 
even office locations. Members of a workspace can join and leave channels as needed. 
You can create a channel that has you as the only member, for receiving your file 
notifications.

� Slack application:
Apps and integrations are the tools that will help you to bring your existing workflows into 
Slack.

The Slack App Directory has thousands of apps that you can integrate into Slack. See 
Figure 6-363.

IBM App Connect is one of these apps. Instructions to create the app can be found at:

https://get.slack.help/hc/en-us/articles/360001537467-A-guide-to-apps-and-the-App-
Directory

Figure 6-363   Integration into Slack

After you have your Gmail, Slack and IBM App Connect service on the IBM Cloud, we are 
ready to build the event-driven flow.

Build the flow
Perform the following steps to build the flow:

1. Log on to the IBM App Connect service on the IBM Cloud.

To enable IBM App Connect to interact with the applications (Gmail and Slack) you need 
to first connect your credentials for these accounts. (This can also potentially be done as 
you build the flow, but it is easier to get it out the road up front).

2. Go to the Catalog tab and select Applications. Here you can either scroll down to find 
the Gmail application or type in a filter for it. See Figure 6-364 on page 422.
Chapter 6. Practical agile integration 421

https://slack.com
https://get.slack.help/hc/en-us/articles/360001537467-A-guide-to-apps-and-the-App-Directory


Figure 6-364   Connect Gmail

3. Click Connect, follow the instruction to log on to Google (if you are not already logged on). 
See Figure 6-365.

Figure 6-365   Connect account

4. Allow IBM App Connect access to your Gmail account.
422 Accelerating Modernization with Agile Integration



After this has been completed, you will see a pop-up message that your account is 
connected and you can check the details. See Figure 6-366 on page 423.

Figure 6-366   Connected Gmail account

5. Repeat the procedure for your Slack information, and agree to connect. See Figure 6-367.

Figure 6-367   Connect Slack

6. You will, again, receive a pop-up indicating that your account is connected. See 
Figure 6-368 on page 424.
Chapter 6. Practical agile integration 423



Figure 6-368   Slack account connected

7. Click to go back to the Dashboard.

As we mentioned, we will be building an event-driven flow. That is, a flow that kicks off in 
response to something noteworthy happening in an application.

8. Select New → Event-driven flow. See Figure 6-369.

 

Figure 6-369   New event-driven flow

9. A pop-up will appear for us to build the flow. First, you add the application where the event 
occurs (in this case, the event is the arrival of an email). 

10.Select the Gmail application.See Figure 6-370 on page 425.
424 Accelerating Modernization with Agile Integration



Figure 6-370   How do you want to start the flow

11.We need to select the Account (you may have only one Gmail account connected, so it will 
default to this account) and the application event (in this case, it is the arrival of a new 
email).

Figure 6-371   Configure event parameters

12.We then need to define what happens next after the event has been detected and 
received. In this case, simply putting a message to Slack is a good start. 

13.Click on the blue circle and select Application. After the event has been received, you 
may choose to do any number of other before passing on to the destination application 
things. For example, you could invoke an API or use any of the utilities in the toolbox to 
manipulate or filter the data. More on this later.
Chapter 6. Practical agile integration 425



14.Select the Slack application. We now see the various operations that can be performed in 
Slack. In this scenarios, we will be creating a message that is sent to Slack. See 
Figure 6-372.

Figure 6-372   Create message in Slack

We now have the source event application and the target application in the flow as shown 
in Figure 6-373.

Figure 6-373   Applications

We could run this flow by providing only one additional configuration detail:
What is the message that we want to post to Slack?

15.Click the Slack application in the flow. In the lower half of the screen, the parameters for 
the application are shown in Figure 6-374 on page 427.

The one mandatory piece of configuration that is missing is the text (the message). 
426 Accelerating Modernization with Agile Integration



Figure 6-374   What’s the message?

16.Click the blue icon next to the field to show all inputs that are available for the text. One of 
the nice design features about IBM App Connect is that at any point in a flow, all data of 
any operation or application that has come before is available for use. In this case, we 
have only the email itself, so we see a list of all of the parts of the email.

17.Select the Body from the list.

Figure 6-375   Insert Body

Now, the flow is correct and complete, and we could stop here and start the flow. However, 
not all emails to that account are necessarily file transfer notifications, so we need to filter 
out anything not relevant.

18.Click the + sign between the two applications. Select the Toolbox in the pop-up that 
appears. Here we see many different things that we light want to do with the data we are 
processing (conditional logic, array handling, parsing and so on). 

19.In this scenario we can use the conditional If tool. Click this tool. See Figure 6-376 on 
page 428.
Chapter 6. Practical agile integration 427



Figure 6-376   Add conditional logic

20.An If block appears in the flow. You can ignore the error flag as this simply indicates that 
there is more configuration required. See Figure 6-377.

Figure 6-377   If block

The one mandatory piece of configuration we need to add is the if condition. This is shown 
in Figure 6-378 on page 428.

Figure 6-378   Needs an if condition
428 Accelerating Modernization with Agile Integration



You might recall that earlier in this section (step 10), we took note of the default Subject 
prefix that would be put on the email to the recipient. We will now filter to only process 
emails that contain that prefix. For this we need to use a $contains() string function.

21.In the if condition box, type co.

22.This will pop-up an auto-complete helper, where we see String functions. Open the list and 
select the $contains() function. See Figure 6-379.

Figure 6-379   Select the function

23.We now see that the function has been inserted into the condition, we merely have to 
complete it. Before we do that, use the drop-down list to change the condition from is 
equal to is true.

24.Click the string and use the blue box at the side of the condition to pop up the available 
input. This time, select the Subject of the email. See Figure 6-380 on page 429.

Figure 6-380   Fill condition

25.We now need to fill the character string to match, this is “[IBMAsperaOnCloud]”. Simply 
position the cursor after the double quotation marks, and enter the text as shown in 
Figure 6-381.
Chapter 6. Practical agile integration 429



Figure 6-381   Completed condition

We need to move the call to Slack from outside the If block to inside so that we send only 
a message to Slack for the relevant emails.

26.Drag the Slack application from outside the IF block to inside as shown in Figure 6-382 on 
page 430.

Figure 6-382   Completed flow

27.Last but not least, give the flow a meaningful name (we chose Notification from Aspera). 
See Figure 6-383.

Figure 6-383   Flow name

28.If everything has been done correctly, we see a pop-up indicating that the flow is ready to 
be started (for example ready to start receiving and processing events). See Figure 6-384.

Figure 6-384   Congratulations, flow complete

The flow can be started either from here or from the main Dashboard.

29.Go back to the Dashboard. Right click the hamburger menu and select Start. See 
Figure 6-385 on page 431.
430 Accelerating Modernization with Agile Integration



Figure 6-385   Start flow

We are now ready to test the flow.

Test the flow by sending another file
Perform the following steps for testing the flow:

1. Go back to IBM Aspera on Cloud and repeat the file transfer that you performed before.

2. After the transfer has completed, go back to the IBM App Connect dashboard.

3. If the flow has successfully received the event notification from Gmail and processed it, 
you will see a green tick in the lower right of the tile for the flow. See Figure 6-386.

Figure 6-386   Successful completion

4. You should also see a notification from Slack that a message has been received. Open 
the message received. We see that IBM App Connect has given us the details of the email 
and also a link (containing a token) which is our claim check. Thus, allowing the recipient 
Chapter 6. Practical agile integration 431



to download the file when it makes sense to do so, and without having to have an IBM 
Aspera account or IBM Aspera transfer server. See Figure 6-387 on page 432.

Figure 6-387   Go and get the file

We could further refine this scenario but adding or removing some of the information from 
the email body using the toolbox in IBM App Connect. We could also have processed the 
file, which would potentially make sense for a small file. However, the claim check pattern 
enables us to deal with much larger files in an “offline” fashion rather than blocking our 
fast-moving messaging platforms.

Obviously, this is a very simplistic scenario and only scratches the surface of what you can 
do with IBM Aspera on Cloud. For more information, go to this web site:

https://ibm.ibmaspera.com/help/
432 Accelerating Modernization with Agile Integration

https://ibm.ibmaspera.com/help/


Chapter 7. Field notes on modernization for 
application integration 

In this chapter, we explore various guidance points for customers who plan to modernize their 
application integration landscape. The target audience for this chapter is individuals who are 
already skilled in IBM App Connect (or its predecessors such as IBM Integration Bus, 
WebSphere Message Broker). We explore at a product level what it means to move to a more 
agile integration style. For example, such a move includes a move to container technology, 
refactoring to more fine-grained deployment, and automation of build pipelines. 

This chapter has the following sections:

� IBM App Connect adoption paths
� Splitting up the ESB: Grouping integrations in a containerized environment
� When does IBM App Connect need a local MQ server?
� Mapping images to helm charts
� Continuous Integration and Continuous Delivery Pipeline using IBM App Connect V11 

architecture
� Continuous Adoption for IBM App Connect
� High Availability and Scaling considerations for IBM App Connect in containers
� Migrating centralized ESB to IBM App Connect on containers
� Splitting an integration across on-premises and cloud

7

© Copyright IBM Corp. 2020. All rights reserved. 433



7.1  IBM App Connect adoption paths

IBM App Connect V11 combines the existing, industry-trusted IBM Integration Bus (IIB) 
software with new cloud based composition capabilities, including connectors to a host of 
well-known SaaS applications. However, a more fundamental change is the continued focus 
on enabling container-based deployment of the on-premises software runtime. But V11 does 
not mandate a move to containers. Customers can continue deploying workloads in the more 
centralized ESB pattern if that is their preference. In this section, we focus on deployment 
options for the on-premises software, comparing the traditional centralized ESB topology with 
the alternative containerized deployment in order to understand the pros and cons of each 
path.

7.1.1  Agile integration

Figure 7-1 summarizes the progressive phases of integration modernization defined by agile 
integration.

Figure 7-1   Moving progressively to agile integration

Agile integration has the potential to dramatically improve the velocity at which connectivity is 
delivered, and the discrete resilience and elastic scalability of isolated integrations. Much of 
this is achieved initially by moving to a more fine-grained deployment of the integrations 
themselves making it possible to change integrations more independently. After integrations 
can be deployed independently, this lays the foundations for decentralized ownership 
whereby the ownership of the integrations moves from a central integration specialist team 
out to the application teams. Enterprises vary in how far down this road they need to travel 
and at what pace.

7.1.2  Adoption path options

So, what does this mean for users who have been running workloads on previous versions of 
IBM Integration Bus? When we upgrade to IBM App Connect, how can we best prepare 
ourselves to leverage agile integration benefits? 
434 Accelerating Modernization with Agile Integration



Some amount of fine-grained deployment can be achieved by using existing capabilities. But 
to gain the most effective isolation between integrations implies the need to move to 
container-based technology. However, as we see, this is more than just a replatforming 
exercise. To gain the most significant benefits we need to move to a truly cloud-native style of 
deployment with impacts how teams build, deploy, administration, and monitor their 
integrations. Some enterprises want to take more gradual steps, staging their way to 
cloud-native, rather than jumping in with both feet. 

Figure 7-2   IBM App Connect adoption paths

We start with the conceptually simplest upgrade we could do, raising the level of the runtime 
to IBM App Connect v11, but still on our existing traditional topology (Path A). We then see 
how much we can push that toward the benefits of agile integration. And we can also see at 
what point we need to make the more significant changes toward a true cloud-native 
deployment on containers (Path B).

Path A: Runtime upgrade only (preserve existing topology)
On this path we simply upgrade the runtimes of the Integration Server and Integration Node, 
and the developer Toolkit. The core topology remains the same.

IBM App Connect v11 does not mandate a move to container infrastructure. It can still be 
deployed in this traditional topology by using Integration Nodes to administer the Integration 
Servers just as we did in prior versions of IBM Integration Bus. Let’s also assume that at least 
some of the workloads require a local MQ server, so that also needs to be present in the 
topology.

Even this simple upgrade path brings core runtime and tooling enhancements. Examples 
depend on what version you are moving from, but might include:

� Simpler file system-based installation

� Removed hard dependency on local MQ server

� New capabilities such as the Group node

� Toolkit now supported on MacOS
Chapter 7. Field notes on modernization for application integration 435



� New admin console

� New web UI for Record and Replay functionality

� Consolidated configuration through properties files: server.conf.yaml, policies

� Access to a wide range of cloud connectors to access well known software as a service 
applications and many more.

Therefore, Path A has the following benefits in comparison to Path B:

� runtime-only upgrade

� minimal learning curve on new technology

� minimal mandatory changes to the build and deploy pipeline

A traditional integration topology looks something like the following (Figure 7-3 on page 437). 
Interestingly, a similar diagram could be drawn for just about any product deployed in a 
non-cloud native way such as an application server for instance.
436 Accelerating Modernization with Agile Integration



Figure 7-3   Example of a traditional deployment (IHS stands for IBM HTTP Server)

Perhaps the first thing to notice is just how much of the diagram is dark blue (labeled “product 
components” in the key). These are the elements that require product-specific skill to install 
and administer.

It is also worth noting that it is a fixed topology – it defines a specific high availability pair.

These traditional topologies have some limitations in comparison to their cloud-native 
equivalents. Let’s have a look at some key aspects:

Note: Customers who have upgraded from v10 already have these skills.
Chapter 7. Field notes on modernization for application integration 437



� Isolation: Any changes that affect the running server, whether fix pack upgrades, 
introduction of new integrations, changes to existing integrations, or configuration 
changes to the server, carry risk as they affect all integrations that run on the shared 
servers. We must either carry that risk or mitigate it with potentially significant amounts of 
regression testing across our integrations.

� Scalability: The topology can be extended only through manual configuration. More CPU 
could be added to server HA1 and HA2. But it would likely still require careful scheduling, 
and there is clearly a physical limit to the amount of CPU that can be added. Adding a 
“server HA3” would typically be a manual exercise, as would removing it when the extra 
load is no longer present.

� High availability: There is a significant amount of the topology to be built beyond that of 
the installation of runtimes and much of this relates to high availability. Consider how much 
of the preceding diagram is dark blue (labeled “Product component” in the key), which 
means it needs to be explicitly installed and configured. This includes setting up of 
load-balancing within and across nodes, enabling high availability and disaster recovery. 
This must be repeated for each environment such as development, test, production. 
Significant custom work to create each environment. But also, there is also a genuine risk 
that configurations in each environment become out of synch. Certainly, there are ways to 
automate and patternize installations, but this in itself is additional work.

It is worth recognizing that even with this traditional topology it is possible to make some 
moves towards the benefits of agile integration. For example, it is already possible to split a 
large installation into a number of separate Integration Servers, each containing a subset of 
the integrations and administered via a single Integration Node. Many large installations are 
likely to be already using this method of grouping. This provides some level of isolation 
between sets of integrations, but not the deep decoupling that would be offered by containers 
described later in Path B. They also enable some degree of independent scaling of 
integrations, but not to the extent of automatically and elastically provisioning new hardware 
resources that you would get in a container orchestration framework.

Perhaps the most striking point is that in this traditional installation, administration and 
deployment all require specialist skills. Container-based environments aim to standardize 
those skills and make those skills transferable across technologies such that the only 
specialist skill required, is the one that matters: how to build artifacts. In our case that would 
mean the building of integration flows. Everything else should be done by using common 
tools and capabilities that are common across all the technologies.

We now look at the cloud-native path. And we take a deeper look at what benefits a more 
fine-grained deployment on containers might bring if we adhere to a true cloud-native 
deployment style.

Path B: Cloud-native deployment (including runtime upgrade)
On this path, we switch completely to a container platform, but more than that, we embrace 
true cloud-native style with associated benefits. Figure 7-4 on page 439 is a simplistic 
example of the key elements of a cloud-native topology: 
438 Accelerating Modernization with Agile Integration



Figure 7-4   Example of a cloud native deployment

Compare this diagram with the diagram for the traditional topology from Path A. The first thing 
to notice is the smaller amount of dark-blue product-specific components. This is possible 
because much of their role is now performed in a standardized way by the container 
orchestration platform. Indeed the remaining dark-blue boxes are simply references to 
standardized container image templates (and Helm Chart templates) from which they were 
built. This demonstrates the level of consistency that a containerized approach provides.

Let’s begin by comparing those same three aspects we discussed at the end of the previous 
section, then we look more broadly at other benefits of a cloud native approach.

� Isolation (fine grained deployment): Containers are truly isolated from one another, 
almost as if they were separate operating system instances. The integrations can be split 
across multiple containers so that changes to the integration flows — and also changes to 
fix pack versions of the IBM App Connect runtime — affect only a very small number of 
integrations within a given container.

� Scalability (policy-based elastic auto-scaling): Container orchestration frameworks 
provide elastic scaling capabilities out-of-the-box in a standardized way. They enable 
automated dynamic changes to the number of replicas of containers based on defined 
workload policies.

� High availability (auto reinstatement): In a containerized world there are standardized 
ways to declaratively define an HA topology (Helm Charts). Furthermore, the components 
that enable the high availability such as load balancers and service registries do not need 
to be installed or configured because they are a fundamental part of the platform. 
High-availability policies are built into Kubernetes, and these can be customized through 
standard configuration.

� Visibility (platform-based monitoring): With fine-grained deployment comes a larger 
number of components deployed. Container orchestration systems offer a single way to 
view the health of components across all types of runtime deployed (in other words, not 
just integration). Furthermore, common standards such as ELK stacks and Prometheus 
are coming to the surface as effective ways to add deeper monitoring capabilities. These 
are often built into commercial container orchestration offerings such as OpenShift.

� Repeatable, rapid topology creation (infrastructure as code): In a container 
orchestration environment, you don’t build topologies yourself. The topology requirements 
are defined declaratively in files that can be stored alongside the code. This ensures that 
Chapter 7. Field notes on modernization for application integration 439



the integrations are always deployed onto a topology that suites their needs. Helm Charts 
are currently the most common mechanism for providing the logical definition of the 
requirements from the deployment topology. For example, they define how it should 
respond to changes in workload, then leave the orchestration framework to work out how 
to build that out and keep it running.

� Cross-environment consistency (image-based deployment, declarative 
configuration): Containers enable us to draw together the operating system, product 
binaries, configuration and the (integration) code into a single immutable image. 
Furthermore, we can combine that with the infrastructure-as-code to define the topology. 
We are then assured that we are deploying exactly the same thing to every environment 
from development right through to production.

� Pipeline automation (file system-based runtime installation and artifact 
deployment): The IBM App Connect integration runtime can be installed, and integration 
flows deployed simply by laying their files on the file system. This significantly reduces the 
specialism required in creation and maintenance of an automated build pipeline to create 
container images, and significantly improves the image preparation time.

� Operational consistency (common platform administration): A broader benefit of 
container platforms is that the skills required for operation of the environment are the same 
across all product and language runtimes – not just integration runtimes such as IBM App 
Connect. One of the aims of containers is encapsulation: that they should all look 
essentially the same from the outside. This allows their deployment, scaling, monitoring, 
and administration in general to be done by using standard container platform capabilities 
with little need for knowledge of what’s inside the container. This encourages consistent 
practices on operations across the landscape and reduces the number of skill sets that 
need to be maintained.

� Portability (standards-based container technology): It could be argued that the level of 
standardization around container technology makes it simpler to move components 
between platforms, and indeed between your own infrastructure and other cloud 
infrastructure. However, this is a rapidly changing technology space, and careful choices 
are required so that components remain portable. Based on those careful choices, 
OpenShift allows you clear portability across various cloud and on-premises environment 
choices.

� Decentralization (technical autonomy to business teams): A truly cloud-native 
approach allows developers to focus on the creation of artifacts by simplifying build and 
deployment, and standardizing the surrounding administration and operational needs. 
This in turn makes it possible for teams to get up to speed on new languages and 
technology more quickly. In the past, we tended to have centralized teams, specialized on 
specific technologies. Relying on more standardization of the surrounding platform, it is 
now reasonable to allow teams to become multi-skilled across a range of build 
technologies rather than relying solely on centralized teams.

� Shift-left (automated, production aligned testing): Thanks to immutable containers and 
the consistency of topology build, developers can build tests and environments that more 
closely resemble the non-functional aspects of the production environment. As a result, 
these qualities of service are built in and tested right from the start.

7.1.3  Conclusion

Containerization is not mandatory for moving to v11 of IBM App Connect. You can upgrade 
the runtime only. In the new version, you retain the existing Integration Node/Integration 
Server topology, and benefit from many fundamental enhancements.
440 Accelerating Modernization with Agile Integration



However, containerization and the associated move to a more cloud-native approach has 
many advantages. Among these are simpler deployment build pipeline, isolation/decoupling 
between integrations, consistency across environments, portability, standardized 
administration and monitoring, and common capabilities that enable non-functional 
characteristics such as scaling and high availability.

7.2  Splitting up the ESB: Grouping integrations in a 
containerized environment

The agile integration approach, as shown in Figure 7-1 on page 434, ideally involves moving 
to a container-based infrastructure, allowing integrations to be deployed more independently. 
At the extreme end of this approach we could imagine a separate container for each and 
every integration. It is technically possible to do this, but not advisable. Doing so would likely 
result in a more numerous and complex collection of components to administer. It is more 
advisable to go for a more measured approach, with groups of integrations in each container. 
The container would have only one integration runtime process, in keeping with good 
practice, but that integration runtime would have a group of integrations that are loaded into it. 
So, we clearly have some decisions to make around how we want to group our integrations 
together, and we discuss this topic in this section.

To put this in practical terms, it is not uncommon to hear of centralized ESBs that run 100s of 
discrete integrations across a highly available pair of servers. It is easy to see the issues and 
risks that could arise when you deploy integrations and update the currently running 
integrations. Furthermore to take advantage of new features, any upgrades to the underlying 
integration runtime in require at least some regression testing across all the integrations 
present. Also, and potentially some downtime might be needed to do the upgrade. See 
Figure 7-5.

Figure 7-5   Basic grouping

In a more decentralized and containerized architecture, we might move a group of 
integrations in each container. These integrations could then be maintained independently, 
and the underlying integration runtimes patched independently, with no risk to integrations in 
other containers. This then offers benefits of agility, productivity, elastic dynamically optimized 
scalability, and more fine-grained resilience models associated with agile integration. 
Chapter 7. Field notes on modernization for application integration 441



Ultimately, this brings faster time to market, reduced system downtime, and more 
cost-effective use of resources.

So, what criteria should we use to decide which ones could/should stay together, and which 
ones must be separated from one another?

7.2.1  What grouping do you have today?

Many businesses have been grouping their integrations into separate Integration Servers 
(execution groups as they used to be called prior to v9 of the product). You might have 
already evolved a good strategy for grouping of integrations into suitably independent groups. 
It is certainly wise to take that as your starting point. If it has been providing sufficient 
decoupling of deployments to date, this might be all that you need. As they say, “If it ain’t 
broke, don’t fix it!”

However, for many, this type of separation has not yet occurred. Or perhaps it occurred as a 
result of more hasty tactical decision, and revisiting the grouping design would be wise.

7.2.2  Splitting by business domain

The simplest place to start is business domains. Integrations owned (created and maintained) 
by radically different parts of the business would be better separated from one another. That 
way, they have less chance of affecting one another whether at deployment or runtime. See 
Figure 7-6.

Figure 7-6   x 100 integrations - Domains

An obvious example of a very coarse-grained split of this type would be in an insurance 
company that has completely different business domains that handle general insurance, life 
insurance/pensions, and health insurance. There would be little advantage in sharing 
infrastructure among integrations that are built for these very separate domains. Indeed, it is 
likely that such a coarse-grained split will already be evident, with each business domain a 
having separate enterprise service bus infrastructure.
442 Accelerating Modernization with Agile Integration



If we plan to move to containers, we can retain this strong separation between business 
domains by using, for example, Kubernetes namespaces and network policies to separate 
them at a network level. This might be supplemented by container-based software defined 
networking such as Calico. At the extreme end we, could of course have different Kubernetes 
clusters for complete separation even at the infrastructural level. 

The same concept could then be followed within a domain to group integrations that into 
subdomains (3a, 3b, 3c). So continuing with the insurance analogy, within the general 
insurance domain, we might see a natural split across motor insurance, house insurance, 
travel insurance and so on. Splitting by subdomain is useful if the integrations are genuinely 
owned (created and administered) by very different business groups, and as such would 
benefit from being handled independently. However, there might be little benefit in splitting 
buildings insurance from contents insurance if they are looked after by the same team of 
people. We would need to look for another reason to subdivide them as we discuss next.

7.2.3  What about integrations that span business domains?

While business domains provide a convenient way to subdivide our integrations, we should 
recognize that integration by its very nature often crosses business domains.

Figure 7-7   Grouping across domains

In Figure 7-7, integrations a, b, c and d are contained within a domain. However, an 
integration such as e is an API implementation that aggregates calls across multiple domains. 
For example, an API that aggregates all the insurance contracts owned by a single individual, 
Chapter 7. Field notes on modernization for application integration 443



across all business domains. So, it might collate details about their travel, car, building, life, 
and health insurance to provide a single view of our relationship with the customer.

Another common example is f, an integration that propagates events from one domain into 
another. A common scenario is synchronizing business data such as a customer’s address 
that might be duplicated in applications in different domains.

Ideally, we would want to allocate cross-domain integrations like e and f in their entirety to a 
specific domain even though they have contact with other domains. 

Figure 7-8   Splitting integrations

In some cases, the right approach might even be to split the integration into several parts 
each of which have a more clear ownership within a domain. In Figure 7-8, Application Y uses 
an integration to formally expose an API for general reuse. Domain 1 then has a listener 
integration that receives events from Application X, and it then propagates the event data to 
Application Y via its new API. 

Forcing ownership decisions for these crosscutting integrations is not such a bad thing. All 
components in an architecture need an owner if they are to be maintained effectively over the 
long term.

7.2.4  Grouping within a domain

Having performed an initial split of the integrations based on business domains, we now need 
to look for reasons why integrations might need to be grouped within those domains. In the 
following diagram there are some possible reasons that we might group integrations together. 
In the remainder of this section, we explore the pros and cons of each. 

Tip: Grouping the applications with the component that has the highest likelihood of 
change that would impact this component would help align the lifecycle of each.
444 Accelerating Modernization with Agile Integration



Figure 7-9   Grouping summary

7.2.5  Stable requirements and performance

Maybe the most obvious reason to group integrations would be if they are stable from a 
requirements and performance point of view. Perhaps few if any changes have been required 
on these integrations for several years, and the workload they serve is well known and 
predictable. There would seem little point in separating these integrations into individual 
containers.

The only thing against keeping them together might be robustness. If one of the integrations 
were to suffer a failure that had an effect on the overall runtime, it might bring the rest of the 
integrations down with it. However, given that integrations have matured over several years, 
most of their usage permutations have already been explored. In other words, if they were 
going to have a catastrophic failure, it would probably already have happened. Furthermore, if 
they’ve been living together on the same server until now, we can assume we are comfortable 
the availability they provide. As such we can be reasonably confident that they can live 
alongside each other and retain the same level of service as we currently have.
Chapter 7. Field notes on modernization for application integration 445



Technical dependencies
There might be sets of integrations that all rely on a key runtime dependency. The most 
obvious example is those that need a local MQ Queue Manager to be present within the 
container, but we will look at some other examples, too.

Local MQ server dependency
The hard dependency on a local MQ server was removed in v10. However, many interfaces 
were written by using MQ server bindings, because it could be assumed that a default local 
queue manager was present. Many of these could be refactored to use client bindings and 
thereby not have a dependency on a local queue manager. But some interfaces will continue 
to require a server binding due to the nodes that are used in the flow, or their transactional 
requirements.

See Figure 7-10.

Figure 7-10   Local MQ queue manager

Those requiring a local MQ server typically also require a persistent volume. As a result they 
will be more restricted in terms of how dynamically they can scale up and down. We should at 
the very least separate out the integrations that do not need a local MQ server such that they 
can enjoy elastic scalability and faster startup times. 

Refer to section 7.3, “When does IBM App Connect need a local MQ server?” on page 452 for 
more details on this topic.

7.2.6  Synchronous versus asynchronous patterns

There are a huge number of different integration patterns, but at a very high level they can 
almost always split up into two core types. See Figure 7-11.

Figure 7-11   Synchronous versus asynchronous patterns

� Request-response (blocking): The caller waits for the integration to occur because they 
need the final result to continue. This applies to most web services or REST APIs. 
Minimizing “response time” is critical for these interactions as the caller is blocked until the 
integration completes.
446 Accelerating Modernization with Agile Integration



� Fire-forget (non-blocking): Those that react to asynchronous fire-and-forget events. The 
initiator of the event does not block waiting for a response. The focus for these interactions 
is maximizing “throughput” – the rate at which events are processed.

Notice that the preceding terms refers to the overall interaction pattern, not to the transport 
being used. For example, request/response calls can be over transports such as HTTP, but 
equally over messaging transports such as IBM MQ. Equally you could do a fire-forget style 
interaction over either transport too.

We should aim to separate these to core types, because they likely require very different 
configuration with regard to aspects such availability and scaling.

Cross dependencies
If an integration is completely dependent on the availability of other integrations, that might 
make a case for them to be deployed together. There are of course other ways to handle this 
situation. See Figure 7-12.

Figure 7-12   Subflows

The related integrations might be better combined by using sub Figure 7-13 on page 448 
flows within the same integration. However, there are times when the flows need to be 
separate, perhaps because they not only call one another but are also independently callable.

Scalability
With modern internet facing applications it is often very difficult to predict future workload. If a 
mobile application is successful it might reach enormous numbers of users. Container 
orchestration platforms enable elastically increasing the number of replicas and then reduce 
them after the load decreases. Integrations that are likely to need to scale together could be 
placed in the same container so that they can scale together via the same replication policy.
Chapter 7. Field notes on modernization for application integration 447



Figure 7-13   Replication

This might help with preemptive, efficient scaling; rather than scaling based on the throughput 
of just one interface, we could react to the sum of the throughput on all related interfaces.

However, there are downsides too. We can no longer maintain the integrations independently, 
nor can we provide differing scaling policies if we find that some of the integrations react 
differently to load.

Resilience
We might have very high availability requirements such, for example "five nines" (99.999% 
availability) where only 5 mins of downtime a year is acceptable. To achieve this goal, we 
might need to ensure that a significant number of replicas are always running. The more 
replicas available, the less likely a requester is to experience downtime should any individual 
instance fail. See Figure 7-14.

Figure 7-14   Availability

We should note of course that the number of replicas is only part of any high availability story. 
We also need to ensure that no single points of failure in any of the underlying resources. For 
example, the replication policy would also have to ensure that replicas were spread across 
multiple physical nodes, and of course make sure that the underlying systems behind the 
integration have appropriate availability themselves.
448 Accelerating Modernization with Agile Integration



Figure 7-15   Zones

It certainly makes sense to isolate those integrations that have significantly higher availability 
requirements such that they can have a separate replication policy. However, we should 
recognize that there are diminishing returns on grouping too many integrations together in 
this situation. Let’s consider that each integration has some probability that it could cause an 
outage of the whole container and all the integrations within it. The overall probability of an 
outage is then potentially greater than the integrations would have faced if they were deployed 
on their own. The more integrations in the group, the worse the availability. Ultimately for very 
specific high-availability requirements, a separate runtime (and therefore container, and 
indeed pod) for each integration is probably required.

7.2.7  Shared lifecycle

Do we have a set of integrations that always get maintained together, and released into 
production in synchronization with one another? These might be a good candidate to be 
grouped together in the same container. This might indeed make ensuring a consistent 
release across the set easier.

Often, this can occur where integrations use shared data models (Figure 7-16). By this we 
mean that they all use a single data model that must remain in step across these integrations. 
This sometimes happens because of data model that implements a particular versioned 
industry standard. Integrations that are locked in step on the same data model often have the 
same release cycle for major changes that accompany changes to the underlying data model 
version. 
Chapter 7. Field notes on modernization for application integration 449



Figure 7-16   Data models

If the integrations are deployed to the same runtime, it makes it easier to deploy them 
consistently. Furthermore, we can also consider using a shared library within the integration 
runtime so we have to update only one copy and we can ensure consistency across the 
integrations.

Another reason for synchronized data models across integrations might be that they are tied 
to the release cycle of the application whose data they expose. For example, changes to an 
integration to incorporate extra data fields from a system of record, might require changes on 
the system or record itself as well as within the integration. Multiple integrations might need to 
change in the same release cycle as the system of record, so it might make sense for them to 
be deployed together.

However, the existence of a shared data model doesn’t guarantee a shared lifecycle for the 
integrations. Although changes to data models are a very common cause of changes to 
integrations there are certainly plenty of other reasons integrations might need to be updated. 
We need to look at the history of changes to see whether there is a clear trend of the 
integrations being released together.

7.2.8  A worked example

Although we didn’t announce it at the start, we have actually deliberately walked through the 
criteria for grouping integrations in roughly priority order. Let’s walk through what that might 
look like with a fictional, but vaguely realistic example.

Let’s take our insurance company example from earlier and imagine they have a centralized 
enterprise service bus that currently contains 100 integrations. We need to decide how best 
to group them into containers.
450 Accelerating Modernization with Agile Integration



Initially we look at the core business domains, who we assume would prefer to have full 
ownership of the integrations that pertain solely to their aspect of the business. We find that 
20 of the services relate to the Life and Pensions business domain, 40 relate to the various 
General Insurance policies (such as car insurance, building insurance), and 25 relate to 
Healthcare Insurance. We group these integrations by their business domains. The remaining 
15 are cross domain services that relate to providing a single view of customer by calling the 
services of the other domains. We decide to bring these integrations together into a new 
“Customer” domain. In some cases, we refactor them where a portion of it really belonged to 
one of the other business domains.

We then look at each domain in turn for further opportunities to group services. Within the 
General Insurance domain for example we see that there are a number of synchronous 
integrations that retrieve data in real-time to enable status inquiries on customers insurance 
products, policies people have taken out, and the claims they have made. These all need to 
be tuned such that they provide a rapid response time for customers who use the web portal 
and mobile application. Thus, highly elastic scaling is required. Then there are a number of 
asynchronous integrations that for example process the regular payment transactions for the 
policies. These need to be tuned for overall throughput because they must complete before 
the end of day batch jobs begin. They are carefully scaled to ensure they make best use of 
processing capabilities in the back-end systems. But we must never overload them as that 
would reduce efficiency and reduce the throughput rate.

Next we notice that of all the synchronous integrations, “get quote” has a particularly critical 
response time. If it doesn’t respond within 2 seconds, its results are not even included by the 
insurance broker sites. Therefore, we decide to bring out that integration into its own separate 
container such that we can ensure it is as lightweight as possible for such that we can 
configure it for rapid elastic scaling.

We also notice that when customers are buying a new policy, they are very sensitive to 
outages during the application process. They will very likely go to a competitor insurance if 
any type of outage occurs while they are in the middle of a purchasing decision. Therefore, 
we choose to put all the synchronous integrations that relate to the buyer journey into a 
separate container so we can configure differently. We set a minimum of six replicas, spread 
across three availability zones, to make them appear as robust as possible even in the face of 
individual outages. The most critical of the integrations we break out into a container of its 
own to further reduce the probability of being affected by an outage of any sort.

Finally, we look at the remaining large group of integrations and spot that there are a number 
of them that are bound to a specific version of a payments related data model. The model is 
dictated by the payments partner, so if it changes, it will change for all related integrations. 
Looking back at the history of changes for these integrations, it seems the only times that 
have been changed in the last few years have been for changes to the payments data model. 
We choose to group them together in a container because we can see that we will almost 
always maintain and deploy them at the same time.

Of the remaining integrations, we leave them grouped together except for a few that are 
related to a pilot project we are working on which is forcing very regular changes. We 
separate these out so they can be independently amended at a rapid pace.

7.2.9  Conclusion

There are many different criteria that we might choose to help us break up a large number of 
integrations on a traditional enterprise services bus into a collection of more lightweight, 
decoupled containers.
Chapter 7. Field notes on modernization for application integration 451



We have discussed a variety of common criteria based on functional (domains) versus 
non-functional (scaling, availability), volatility versus stability, and various forms of 
dependencies (such as MQ, data models).

What’s clear is that some of these criteria are overlapping so we have discussed the 
importance of establishing priorities, beginning with high-level business ownership and 
working down to more pragmatic concerns.

We have provided a simple framework for making your own decisions about grouping of 
integrations as you move on your containerization journey. However, we recognize that every 
enterprise is functionally different, with a differently evolved landscape, and different business 
priorities. 

We should of course always aim to design our integrations such that they are strongly 
independent of one another. This way we can easily change our mind about the grouping 
decisions and implement that change with minimal risk. 

7.3  When does IBM App Connect need a local MQ server?

Back in 2015, with v10 of IBM App Connect (at that time known as IBM Integration Bus), the 
hard dependency on a locally installed IBM MQ server was removed. Since that time, we 
have been able to install IBM App Connect completely independent of MQ making the 
installation and the resultant topology lighter and simpler. With the move toward more 
granular installation of integrations, especially in containers, knowing exactly when we can 
exploit this more lightweight installation has become all the more relevant.

In this section, we explore when we can install IBM App Connect independently and, 
conversely, under what circumstances might we still need a locally installed IBM MQ server? 
Put another way, when do we really need a local IBM MQ server as opposed to when will it be 
sufficient to connect to remote MQ servers?

There are two very different reasons IBM App Connect makes use of IBM MQ:

� As an asynchronous messaging provider

� As a co-coordinator for global (two-phase commit) transactions

As explained later in this article, it is only the latter use of MQ that is the real driver for a 
locally installed MQ server, but read on as this use might be less common than you thought.

7.3.1  Benefits of being dependency-free in container-based environments

The question of whether IBM App Connect requires a local MQ server becomes more 
pertinent as we move to container-based deployment and we explore installation of 
integrations in a more granular way. Rather than having a single installation that contains 

Note: The following section was correct at the time of writing the book. However, changes 
are anticipated in the relatively near term that will further reduce the need for a local MQ 
server for IBM App Connect. For the latest information on this, check the blog post from 
which this section was created, which will be updated to reflect any changes when they 
occur. 

https://developer.ibm.com/integration/blog/2018/06/21/ace-need-local-mq-server/
452 Accelerating Modernization with Agile Integration

https://developer.ibm.com/integration/blog/2018/06/21/ace-need-local-mq-server/


every integration, we can move to deploying small groups of integrations in isolated 
containers. 

Figure 7-17   Local MQ for IBM App Connect -1

When you combine container technologies such as Docker with container orchestration 
facilities such as Kubernetes, you can rapidly stand up a discrete set of integrations within a 
container in a scalable, secure, and highly-available configuration. This represents a radically 
different approach to the implementation of integrations, potentially providing greater agility, 
scalability and resilience. 

Figure 7-18   Local MQ for IBM App Connect -2

In the more traditional centralized architecture, the infrastructure must have a local MQ 
server, even if only a small number of the integrations require it.

In the more modern fine-grained architecture, we can decide whether a local IBM MQ server 
is required based on the specific needs of the small set of integrations it contains.

There are significant benefits in being able to stand up an integration server that does not 
need a local IBM MQ server. These benefits become particularly pronounced in a 
container-based environment such as Docker:

� The size of the installation is dramatically reduced, and thereby the size of the Docker 
image. This reduces build times due to the reduced image creation time, and reduces 
deployment times as a smaller image is transported out to the environments.

� The running container uses significantly less memory as it has no processes associated 
with the MQ server. Cloud infrastructure that is used for container-based deployment is 
Chapter 7. Field notes on modernization for application integration 453



often charged on the basis of memory rather than CPU, so this can have a significant 
impact on running cost.

� Start-up of a container is much faster because only one operating system process is 
started; that of the integration engine. This improves agility by reducing test cycle time, 
and improves resilience and elastic scalability by being able to introduce new runtimes 
into a cluster more rapidly.

� MQ holds its message data on persistent volumes, and specific servers need access to 
specific volumes within the MQ topology. If IBM App Connect has a local MQ server, it 
becomes locked into this topology. This makes it more complex to elastically add new 
servers to handle demand dynamically. Once again, this makes it harder to take 
advantage of the cost benefits of elastic cloud infrastructure.

7.3.2  When can we manage without a local MQ server?

Clearly, the simplest case where a local MQ server is not needed is where we have a flow that 
does not put or get IBM MQ messages. There are around 100 nodes that can be used to 
create flows in IBM App Connect, and only perhaps a dozen of those involve MQ. So, there 
are plenty of integrations that can be created without MQ at all. We can expose and invoke 
RESTful APIs and SOAP-based web services, perform database transactions, read and write 
files, connect to enterprise applications like SAP, Siebel and much more, without the need for 
a local MQ server. Indeed, IBM App Connect now enables, since v11, connectivity to over 100 
cloud-based SaaS applications too.

What if we are using IBM MQ, or another transactional resource (for example a database)? 
We should start by making a clear statement: We do not need a local queue manager for IBM 
App Connect to communicate with IBM MQ queues. IBM MQ provides an MQ client that 
enables messages to be placed on and retrieved from remote queues by using single-phase 
commit transactions, without the need for a local MQ server.

A single-phase commit is the transactional protocol used when our transaction spans only 
one transactional resource. For example, we want to work only with messages on a single 
queue manager, or perform actions on a single database. With a single-phase commit 
transaction, the actual transaction is essentially happening within the one resource we are 
talking to.

To use client-based connections when you create flows in IBM App Connect, you simply 
choose the client setting on the configuration of the MQInput, MQOutput, MQGet, or 
MQReply nodes. Alternatively, you can use an MQEndpoint policy to consistently apply the 
use client-based connections feature across multiple nodes in flows along with other MQ 
properties.

So, if a given flow uses only client connections to MQ, no local MQ server is required, as 
shown in Figure 7-19 on page 455.
454 Accelerating Modernization with Agile Integration



Figure 7-19   Single transaction with an MQ queue

As can be seen from Figure 7-20 the same is true of any interaction with a single 
transactional resource, such as a database. 

Figure 7-20   Single transaction with a database

Indeed, we can even interact with multiple transactional resources as shown in Figure 7-21. 
However, this is possible only if we don't need them to be combined into a single unit of work 
(for example if one fails, they all rollback to where they started). 

Figure 7-21   Separate transactions to a database and a queue

Assume that we do want to combine multiple resources into a single unit of work as shown in 
Figure 7-22. In that case, we require a local MQ server to coordinate the required two-phase 
commit transaction.
Chapter 7. Field notes on modernization for application integration 455



Figure 7-22   Combined transaction to a database and a queue

7.3.3  Can I talk to multiple queues in the same transaction without a local MQ 
server?

Starting with the simplest case, we can perform multiple MQ updates in the same transaction 
via a client connection as long as they are all on the same queue manager as in Figure 7-23 
on page 456.

Figure 7-23   One transaction updating two queues in the same queue manager

The complete set of interactions with all queues can be committed (or rolled back) together. 
This is because this interaction is performed by using only a single-phase commit because 
the queue manager is itself only a single-resource manager.

To be clear, multiple updates to queues on the same queue manager do not necessarily 
require a local queue manager, and can be done over a client connection.

If we do have to talk to two separate queue managers there are three options as shown in 
Figure 7-24), Figure 7-25 on page 457 and Figure 7-26 on page 457. Let’s look at each one 
separately.

In Figure 7-24, we update each queue individually. Because each transaction is a separate 
one-phase commit transaction, no local MQ server is required. 

Figure 7-24   Two separate transactions to two queues in different queue managers
456 Accelerating Modernization with Agile Integration



However, there is a small risk like the one we saw for diagram c. Something could happen in 
the middle of the flow such that the first transaction occurs but the second one doesn’t. If this 
risk would be a concern — and we really need to treat the updates as a single unit of work — 
then we need to consider one of the other methods as shown in Figure 7-25 on page 457 and 
Figure 7-26 on page 457.

As shown in Figure 7-25, it is possible to configure an MQ topology. That way, IBM App 
Connect can perform actions across queues that reside on multiple different queue 
managers, still without needing a local MQ server. 

Figure 7-25   An update to two queues through use of a remote queue

The technique here is to directly connect one queue manager to the Integration Server (we 
can call this a concentrator), and make all of the queues that are involved in the transaction 
available on that. This is done by setting up remote queue definitions on the concentrator 
queue manager for the queues that reside on other queue managers. IBM App Connect can 
then “see” all the queues via the concentrator queue manager, and perform the multi-queue 
interaction over a single-phase commit, which can be done with the client connection. The 
concentrator queue manager then takes on the task of performing the more complex 
transactional and persistent behavior across multiple queue managers, using standard MQ 
channels to achieve the desired coordinated results.

7.3.4  Coordinating a two-phase commit requires a local MQ server

If you look back at the preceding diagram, you see that a local MQ server is required because 
we want IBM App Connect to combine changes to two (or more) separate resources. For 
example, see the queue and database in Figure 7-22 on page 456 or between two separate 
queue managers as in diagram Figure 7-26 that follows. 

Figure 7-26   A coordinated transaction to two queues in two different queue managers

Something needs to act as a transaction manager across both resources. IBM MQ can be a 
transaction manager in a two-phase commit transaction on behalf of IBM App Connect, but 
only if it is locally installed.
Chapter 7. Field notes on modernization for application integration 457



The transaction manager then performs what is known as a two-phase commit, where the 
overall transaction is broken down into two phases:

� A prepare phase, where each of the resources makes a promise to complete the work if 
asked.

� A separate commit phase, where all the resources are requested to complete their 
individual units of work. 

If any one of the resources is unable to complete in a reasonable time, then the transaction 
manager can request a rollback of all the involved resources.

It is for this two-phase commit transaction coordination that an IBM MQ server must be 
installed locally to IBM App Connect for scenarios d) and h). 

What are the alternatives to a two-phase commit transaction?
A two-phase commit is not as commonly used as you might expect. This fact is surprising 
because a truly atomic transaction across two or more resources helps ensure data 
consistency. However, the reality is as follows:

� It is complex to set up, requiring the additional transaction managers for coordination of 
the overall transaction

� It requires the resources that are involved to trust a totally independent transaction 
manager. They must trust that management will be efficient with the use of locks against 
the resource, between the prepare and commit phases.

� It introduces considerable complexity to architect for disaster recovery, and even for 
high-availability configurations. Two-phase commit requires complete consistency across 
both the transaction logs of the transaction manager, and all the distributed resources 
involved. Architecting this consistency even in disaster recovery situations can be very 
difficult.

It is very rare to see two-phase commit between two separate systems owned (and funded) 
by fundamentally different parts of an organization. It is sometimes found within a single 
solution, where all resources (for example database and queues) are owned by the same 
team or part of the same product. Even in this situation, designers are often looking for 
alternatives.

Furthermore, modern RESTful APIs, which are increasingly becoming the predominant way 
that distributed systems talk to one another, work over the HTTP(S) protocol. They are not 
transactional on any level, let alone able to take part in two-phase commit. So, if in the future 
we are able to design complex solutions involving multiple systems that are available only 
over RESTful APIs, we will need alternative approaches to distributed transactions.

For circumstances where it is preferable to look at alternative designs to two-phase commit, 
here are a couple of commonly used designs:

� Retries and idempotence: For many scenarios, it is possible to ensure that the 
operations on the target systems are idempotent. For example, if the request was to 
process a payment, then if the same payment were submitted twice, it would still result in 
only one payment being processed. With idempotent target systems, we might be able to 
remove the need for two-phase commit. We might simply ensure that we perform retries 
until success occurs. This provides eventual consistency as opposed to absolute 
consistency. However, that approach might not be appropriate for your use case.

� Saga or compensation pattern: The saga pattern was introduced in 1987 as a way to 
handle distributed transactions across independent systems. It works by bringing together 
atomic actions, either by chaining them, or by having a central orchestrator. If one of the 
systems should fail, then a compensating action is performed on all those systems that 
458 Accelerating Modernization with Agile Integration



have already processed the event, in a non-transactional way. This pattern has been 
implemented in many forms over the intervening years. Business Process Execution 
Language (BPEL) is an example of an orchestration-based saga implementation. Equally, 
chains of message flows – each one asynchronously leading into the next – could also be 
set up to perform a choreography style saga implementation. There is a resurgence of 
interest in the saga pattern in recent years due to the highly distributed nature of 
microservice applications.

So there certainly are alternatives (such as those by design that were previously mentioned), 
and also more practical product specific mechanisms (such as that discussed earlier for 
handling updates to queues across multiple queue managers). Ultimately, whether we 
choose an alternative to two-phase commit will depend on how much benefit we believe we 
stand to gain from the increased simplicity of the IBM App Connect topology.

7.3.5  When else do I need a local MQ server?

In addition to the use cases discussed so far, at the time of writing a small collection of 
features in IBM App Connect require a local MQ server. These are the aggregation nodes, the 
timeout nodes, and the Collector, Sequence and Resequence nodes. We are deliberately 
discussing this separately from the preceding for two reasons:

� New versions of these nodes are being developed and introduced into App Connect in the 
relatively near term to remove the dependency on local MQ for common scenarios. 
Depending on your migration timescales, these current dependencies might not actually 
present an issue.

� Although these nodes currently require local MQ, they do not necessarily imply the same 
stateful persistence that would be required for the preceding two-phase commit scenarios. 
For example, an aggregation node could be gathering information from a number of 
resources in parallel. The node might not need persistent queues in order to respond to a 
caller in real-time. Queues in this instance are just being used for efficiency of 
multi-threading, not for their assured delivery properties. So, we might need a local MQ 
server, but have a low level of concern about persistence. Therefore, we could use a 
simpler, more stateless topology.

So, in short, the existing dependency on local MQ for these nodes is quickly becoming less 
important.

7.3.6  Why do we have so many integrations that use server connections?

It is common to find older integration flows that use server connections to a local MQ even 
when they are not required. This is largely because a local MQ server in the past could be 
assumed to be present. It also provided some extra comfort at a time when networks outages 
were more common, because you know that a message would at least reach the local queue 
and the messaging system would eventually take care of delivery. Today, networks are 
generally more reliable and the need for local MQ servers is much reduced. Indeed, many 
customers are significantly simplifying their MQ topologies, moving to more centralized 
options such as MQ Appliances to host all their queue managers in high-availability pair. So, 
perhaps with some minor reconfiguration, many existing integrations could simply use 
client-based connections instead of server connection, and they would no longer have a 
dependency on a local queue manager.
Chapter 7. Field notes on modernization for application integration 459



7.3.7  Conclusion

As we have seen, many scenarios can be achieved without the need for a local queue 
manager. The single main exception is where IBM App Connect is required to perform a 
two-phase commit transaction. However, there are viable alternatives to the two-phase 
commit. This type of commit is not mandatory for scenarios with multiple queue managers or 
combined database and queue updates. The benefits of being able to independently 
administer and scale our IBM App Connect and IBM MQ topologies could make those 
alternative patterns very attractive. Add the fact that with a more fine-grained integration 
deployment approach, we don’t have to build a one-size fits all topology. We can instead just 
introduce local MQ server for the integrations where it is most needed. 

7.4  Mapping images to helm charts

In the example scenario we built out in chapter 6, we deployed integrations by using the new 
convenience capabilities of the consolidated user interface for the IBM Cloud Pak for 
Integrations (see section 6.2, “Application Integration to front a data store with a basic API” on 
page 173). However, some more advanced users will likely want more control over the 
deployment specifics. So, they might want to deploy their own images, by using their own 
topology definitions (helm charts). This section discusses what is available from IBM to 
accelerate this approach.

In a container orchestration environment, topologies are not built by their users. The topology 
requirements are defined declaratively in files that can be stored alongside the code. This 
ensures that the integrations are always deployed onto a topology that suites their needs. 

Helm charts are currently the de facto standard for providing the logical definition of the 
requirements from the deployment topology. For example, they define how it should respond 
to changes in workload, then leave the orchestration framework to work out how to build that 
out and keep it running.

Important: Since the writing of this IBM Redbooks publication, the IBM Cloud Pak for 
Integration has embraced Kubernetes Operators (https://coreos.com/operators/). This 
significantly simplifies how components such as an Integration Server are installed and 
maintained, extending the features provided by Helm. There is more information and an 
excellent video demonstrating this new capability here:

https://developer.ibm.com/integration/blog/2020/06/28/ibm-app-connect-operator-
1-0-is-now-available/

It does unfortunately mean that some of the instructions describing the deployment of App 
Connect Enterprise in containers within this section are now out of date, and will need to 
be adapted to the use of operators. We may well look to update the book, but in the mean 
time, refer to the product documentation to find information on the new features.

Note: From a future-looking point of view, we should note that a further complementary 
option known as a Kubernetes Operator 
(https://kubernetes.io/docs/concepts/extend-kubernetes/operator) is also becoming 
important in this space. However, at this time, it is appropriate to focus on the current 
technology of helm charts. 
460 Accelerating Modernization with Agile Integration

https://kubernetes.io/docs/concepts/extend-kubernetes/operator
https://coreos.com/operators/
https://developer.ibm.com/integration/blog/2020/06/28/ibm-app-connect-operator-1-0-is-now-available/


In a containerized approach, the container consistency is being achieved by referencing to 
standardized container image templates (and helm chart templates). 

A key objective in the approach for standardized container-image templates for IBM App 
Connect is to reduce the number of Helm Chart templates, while ensuring that the required 
use cases have been covered.

In Figure 7-27 we see a need for three primary starting point images for IBM App Connect.

Figure 7-27   Three primary starting point images for IBM App Connect

The first two, contain the core IBM App Connect runtime binaries (V 11.x.x.x), and optionally 
including the MQ Client depending whether it is required. These two images provide the 
smallest possible footprint and startup time, keeping resource usage to a minimum, while 
satisfying the highly stateless use cases.

The last image in Figure 7-27 will apply for a use case, where an MQ queue manager is 
required locally. Typically, for reasons of two-phase commit transactionality and including for 
some of the more complex message dependent nodes, a different image would be the 
starting point. This would typically (though not always) infer a persistent volume on which to 
store messages and transaction logs, resulting in a different set of deployment patterns. 

IBM provides a set of images with IBM App Connect based on the preceding scenarios. The 
available images can be accessed on the Docker Hub 
(https://hub.docker.com/r/ibmcom/ace/) and can be used straight away.

If you want to further customize these images for your own purposes, the Dockerfile from 
which they are built is available on GitHub:
(https://github.com/ot4i/ace-docker/blob/master/ubi/Dockerfile.aceonly)

7.4.1  Developing helm charts for Kubernetes 

IBM provides a helm chart repository that is available at https://github.com/ot4i/ace-helm 
that contains a stable repo with publicly available versions of many IBM software products. 
IBM also encourages others to publish their software charts in the community section of the 
repo. 

To help build quality helm charts, the repository includes detailed recommendations about 
how to build a proper helm chart. The following repository document and IBM Redbooks refer 
to IBM Cloud Private, but most of the considerations around customizing helm charts apply to 
Cloud Paks, too:

� (https://github.com/IBM/charts/blob/master/GUIDELINES.md#developing-helm-charts-f
or-ibm-cloud-private

� A detailed guide for building helm charts is covered in an IBM Redbooks IBM Cloud 
Private Application Developer’s Guide, SG248441.

Docker Image

IBM App Connect V 11.x.x.x

Docker Image

IBM App Connect V 11.x.x.x

Docker Image

Integration Server
Integration Server

MQ Client

Integration Server

Local Queue Manager

IBM App Connect V 11.x.x.x
Chapter 7. Field notes on modernization for application integration 461

https://github.com/IBM/charts/blob/master/GUIDELINES.md#developing-helm-charts-for-ibm-cloud-private
https://github.com/ot4i/ace-docker/blob/master/ubi/Dockerfile.aceonly
https://hub.docker.com/r/ibmcom/ace/
https://github.com/ot4i/ace-helm


IBM Cloud Pak for Integration provides helm charts out-of-the-box that can be configured to 
point to the three primary starting point images as described. 

In order to create your own helm chart, several methods can be used. The following section 
outlines the process of generating and deploying a helm chart based on a Docker image 
using the simplest method: the use of the Helm CLI command, using based on a helm 
template that is provided.

Docker image
Create your own Docker Image or use one of the provided set of images on Docker Hub. As 
discussed earlier, this Image can contain one of the preceding variations with the required 
version of IBM App Connect. In addition, the Docker Image can contain your BAR file, which 
streamlines the containerization approach.

1. Create an empty image stream in your project for the image by using oc create image 
stream: 

$ oc create imagestream myimagestream

2. In order to be able to push this Docker image to the OCP (OpenShift Container Platform) 
registry, tag your image with ICP cluster information. For example: 

# docker tag ace:11.0.0.0 mycluster.icp:8500/default/ace_bar:11.0.0.0

3. Push the image to the OCP registry. For example.

# docker login mycluster.icp:8500
# docker push mycluster.icp:8500/default/ace_bar:11.0.0.0

4. Navigate to the ICP admin console and verify that the Docker image is now shown at 
Cluster Console → Builds → Image Streams.

Create your own helm chart
We now have an image that can be used with a helm chart for Application Integration.

1. Start by downloading the base code of the helm package for IBM App Connect from 
GitHub:

https://github.com/ot4i/ace-helm

It is expected that this base Helm template will be updated and tailored by users, based on 
their requirements.

2. Unpack the downloaded .zip file (ace-helm-master.zip) and navigate to subdirectory to 
get the Chart.yaml file.

3. Edit the Chart.yaml file to give a unique name to the helm chart that you want to create. 
For example: name: ibm-ace-bar-dev.

4. Edit the values.yaml to provide the name of the Docker image that you just pushed to the 
local OCP registry in the preceding section. For example:

image:
# repository is the container registry to use, which defaults to IIB docker 
registry hub image
repository: mycluster.icp:8500/default/ace_bar
# tag is the tag to use for the container repository
tag: 11.0.0.0

5. To verify that the helm chart directory name and structure are correct, run the lint 
command as shown below. Make sure that the name of the top-level directory where the 
helm package files are stored, matches with the name of the chart specified in the 
Chart.yaml file: 
462 Accelerating Modernization with Agile Integration

https://github.com/ot4i/ace-helm


# helm lint ibm-ace-bar-dev
==> Linting ibm-ace-bar-dev
Lint OK
1 chart(s) linted, no failures

6. Now package the helm chart:

# helm package ibm-ace-bar-dev
Successfully packaged chart and saved it to: 
/root/ACE/ace-helm-master/ibm-ace-bar-dev-1.0.0.tgz

7. Load the helm chart in the Cloud Pak catalog:

# cloudctl login -a https://mycluster.icp:8443 –skip-ssl-validation
# kubectl load-helm-chart –archive ibm-ace-bar-dev-1.0.0.tgz –clustername 
mycluster.icp
Loading helm chart
{“url”:”https://icp-management-ingress:8443/helm-repo/charts/index.yaml”}
OK
Synch charts
{“message”:”synch started”}
OK

8. The chart that was just published will now be seen in the Cloud Pak admin console, in the 
Catalog. Use ‘local-charts’ as a filter in the Catalog menu. 

Using helm chart metadata
Cloud Pak catalog provides some other features to make the helm charts easier to use. One 
of these features is formatting and validating the values that the chart makes available for 
users to customize.

You can define metadata for the parameters in values-metadata.yaml file that is placed in root 
directory of the chart (same as values.yaml). The file values-metadata.yaml defines the 
metadata for values defined in values.yaml. It should mirror the same structure of 
values.yaml, except that instead of specifying a value for the leaf property, define a property 
named __metadata.

If the values-metadata.yaml file is not present, the UI continues to display all parameters that 
are declared in values.yaml based on the type inference. See Example 7-1.

Example 7-1   values.yaml

example:
  __metadata:
    label: Example
    description: New Version
  stringField:
    __metadata:
      label: String field
      type: string
      required: true
  numberField:
    __metadata:
      label: Number field (with validation)

Note: This requires the Cloud Pak CLI to be installed as specified in 5.1.4, “Getting 
access to IBM Cloud Pak for Integration for the exercises” on page 145.
Chapter 7. Field notes on modernization for application integration 463



      type: number
      required: true

7.4.2  Upgrading (extending) helm charts

As your application evolves, the application images and helm chart changes versions. Helm 
provides a convenient way to upgrade existing releases with new content. The same 
command is used for two purposes:

Upgrade to new version of helm chart (for example, to define new Kubernetes resources).

Update the resources with new values (without changing the helm chart version).

To upgrade the release, run the following command:

helm upgrade <release> <chart>

Helm upgrade can take new values that are specified with 

-f <new_values.yaml> 

or using 

--set key=value option. 

You must specify only the new values to be used for the upgrade. All of the previous values 
that are used before in release are carried forward. For example, run the following command 
to update only the container image tag that is used by the chart:

helm upgrade <release> <chart> --set image.tag=v1.0.1

To avoid this behavior and reset all the values to default values that are included in the chart, 
add --reset-values.

If any of the values change, the pod specification template within deployment definition (for 
example, the image tag as shown in the preceding section), triggers creating a ReplicaSet. If 
the update strategy that is specified in deployment is RollingUpdate, the deployment 
controller gradually scales up new ReplicaSet and scales down old ReplicaSet. This process 
ensures that the required number of application pods is available in any point. As the result, 
the application should be upgraded in place, without a downtime that is visible for users. An 
alternative update strategy is to Recreate. In that case, the old ReplicaSet and pods are 
deleted and a new one is created.

Customizing helm charts
To allow users to customize or extend the chart deployment, it is possible to replace static 
parts within a template with references to the content of the values.yaml file. The values.yaml 
file can define whatever names you want by following a hierarchical YAML structure.

In the following example we show customization of a helm chart by adding additional ports.

1. In the service.yaml file you can add a section under ‘ports’, to specify a new port with a 
name ‘switch1’. The value of the port number will be taken from the values.yaml file 
(values.service.switch1). Example 7-2.

Example 7-2   Customization of a helm chart

spec:
ports:
  - port: {{ .Values.service.switch1 }}
464 Accelerating Modernization with Agile Integration



   targetPort: {{ .Values.service.switch1 }}
   protocol: TCP
   name: switch1 

2. In the values.yaml file, under the ‘service’ part in the file, along the default ports, a port for 
‘switch1’ is defined, which will be picked up by service.yaml file.

service:
  type: NodePort
  webuiPort: 7600
  serverlistenerPort: 7800
  serverlistenerTLSPort: 7843
  switch1: 9010

3. Finally, in order to see the fields in the helm charts WebUI for the newly added port the 
values-metadata.yaml file should also define ‘switch1’ port as a parameter.

service  
  switch-1:
    __metadata:
      label: "switch-1 port"
      description: "This is port number example"
      type: "number"
      immutable: true
      required: false

7.5  Continuous Integration and Continuous Delivery Pipeline 
using IBM App Connect V11 architecture

This section looks at IBM App Connect in the context of CI/CD pipelines. The theory of CI/CD 
pipelines is explored, building upon 4.2.10, “Continuous Integration and Continuous Delivery 
and Deployment” on page 97, leading into an example pipeline that displays a practical 
implementation. 

When we talk about modernization of your Integrations, an important topic for discussion is 
"pipelines". Many IT organizations already have an existing Pipeline implementation in one 
form or another. These pipelines can be triggered either manually or automatically and as an 
input it could serve a source or a whole BAR file.

When discussing Pipelines, the key terminology we use, is defined below: 

Important: Since the writing of this IBM Redbooks publication, the IBM Cloud Pak for 
Integration has embraced Kubernetes Operators (https://coreos.com/operators/). This 
significantly simplifies how components such as an Integration Server are installed and 
maintained, extending the features provided by Helm. There is more information and an 
excellent video demonstrating this new capability here:

https://developer.ibm.com/integration/blog/2020/06/28/ibm-app-connect-operator-
1-0-is-now-available/

It does unfortunately mean that some of the instructions describing the deployment of App 
Connect Enterprise in containers within this section are now out of date, and will need to 
be adapted to the use of operators. We may well look to update the book, but in the mean 
time, refer to the product documentation to find information on the new features.
Chapter 7. Field notes on modernization for application integration 465

https://coreos.com/operators/
https://developer.ibm.com/integration/blog/2020/06/28/ibm-app-connect-operator-1-0-is-now-available/


� Continuous Integration (CI) – this refers to build and test, whenever new code is available. 
This type of testing will show if the new code has had any impact or broken anything. 

� Continuous Delivery (CD) – this phase refers to when we are pushing to production from a 
continuous stream. After the code is decided to be ready, it is pushed to production. 

� Continuous Deployment – similar to the continuous delivery, this outlines an automated 
push to production, without human intervention, where the code is stopped going live only 
by failed tests.

We see three main stages in running your Pipeline when you use IBM App Connect V11 
architecture.

Development
As the Pipeline structure usually involves multiple products, this stage is expected to cover 
your development work towards building the components required. For example, as shown in 
the figure below, the development work might include creation of MQ resources, BAR files 
and packaging. Further, Secrets and Docker files are being developed, and finally Helm Chart 
development and storing. Figure 7-28 on page 466.

Figure 7-28   Pipeline development

Build
The Build part of the Pipeline includes the build, validation and storing of the BAR file, 
followed by the build, storing and validation of the Image. We see that some of the steps can 
be combined as shown in the figure below, depending on the build approach. See Figure 7-29 
on page 466.

Figure 7-29   Pipeline build

Deploy
The creation of secrets might already be complete in the final steps of the Pipeline because 
they were created as part of the development process. The final stage includes the update of 
the Helm Chart Values and its deployment. See Figure 7-30.

Figure 7-30   Pipeline deployment

Please refer to 7.5.5, “Practical example” on page 475 for a practical Pipeline scenario built 
during the stages that were described previously.
466 Accelerating Modernization with Agile Integration



7.5.1  Continuous Integration Delivery and Deployment

CI/CD pipelines have increasingly been adopted by many organizations, as the switch to 
DevOps implementations has been made from traditional SOA and waterfall 
implementations. As an integration tool, there are specific considerations that need to be 
made when you incorporate IBM App Connect into a CI/CD pipeline.

To help us understand these considerations, it is helpful to briefly explore the different 
meanings of CI/CD.

https://www.ibm.com/blogs/cloud-computing/2018/11/27/continuous-integration-vs-con
tinuous-delivery/

CI: Continuous Integration
Continuous Integration is a DevOps practice where developers commit code into source 
control. This is combined with a process comprised of automated tools that check and verify 
this code each time a commit is made. The benefits of this approach are that code changes 
from multiple developers can be tested together more frequently, meaning that problems can 
be spotted far earlier. 

CD: Continuous Delivery
Continuous Delivery (CD) is centered around the delivery of working applications and 
updates to these applications (such as bug fixes and new features) to consumers as quickly 
and safely as possible. Because the delivery is ‘continuous’ there are no fixed release cycles, 
instead code is produced and is made available to be pushed to production as soon as it is 
ready. 

CD: Continuous Deployment
Continuous Deployment is the automation of releases to production. In this case only the 
failure of a testing stage in the Continuous Deployment pipeline prevents the deployment of 
new code to production. 

IBM App Connect: Continuous Delivery versus Deployment
As an integration technology IBM App Connect will, in most cases, be deployed into 
production environments that are not naturally suited to a continuous deployment solution. 
Consideration needs to be given to a number of factors prior to deploying new integration 
services to a production environment, both from a technical and business point of view. For 
example, an organization might choose to only perform production updates in specific time 
windows when customer traffic is reduced in order to reduce risk. 

On the technical side, dependencies will need to be appropriately managed. Validation is 
needed to ensure that the systems to which a new integration service connects are at the 
correct versions in production. Failure to ensure this could lead to errors and to the need to 
back out an update. 

The CD model produces new integration services and makes them available for deployment 
to production via a separate process. This model is a more flexible approach that fits more 
naturally with integration scenarios and IBM App Connect. However, the examples in the 
previous paragraphs illustrate why the amount of CD that is used will be different for each 
organization. Some will prefer a higher level of automation in production, and others will 
prefer more control and flexibility.
Chapter 7. Field notes on modernization for application integration 467

https://www.ibm.com/blogs/cloud-computing/2018/11/27/continuous-integration-vs-continuous-delivery/


7.5.2  Example pipeline - High-level concepts

Figure 7-31 describes the stages of an example CI/CD pipeline for IBM App Connect. These 
have been highlighted in different logical stages that could be split out into smaller sub 
pipelines depending on the level of granularity required. The section explains the different 
stages:

Figure 7-31   CI/CD pipeline stages for IBM App Connect

Prerequisites
The pipeline has the following prerequisites:

� IBM App Connect base images (on top of which the microservice images are created) are 
available on the CI/CD automation server and the cloud instance.

� IBM App Connect configuration secrets have been created in each Kubernetes 
environment where the microservice will be deployed.

� IBM App Connect helm chart has been deployed the cloud instance Helm repository.

Section 1
This section looks at pulling down the source code and the creation of deployable artifacts, be 
this a BAR file or Docker image.

Pull infrastructure source
This stage pulls down the infrastructure source. This includes resources that describe the 
pipeline and run the pipeline build (for example a Jenkinsfile, which is a type of declarative 
pipeline), scripts and other resources that are run by the pipeline and resources — other than 
application code — that are used to build the IBM App Connect microservice image (such as 
a copy of the ace-docker-master folder from ot4i).
468 Accelerating Modernization with Agile Integration



Pull Application Source
This stage pulls down the application source code. This source is comprised of resources that 
are packaged into a BAR file, such as message flows, subflows, schemas, swagger files, and 
ESQL files. If the mqsipackagebar command is used in your pipeline to create your BAR file 
then any Java applications and message sets must already be compiled and checked into the 
application source code repository here: 

https://www.ibm.com/support/knowledge/en/SSTTDS_11.0.0/com.ibm.etools.mft.doc/bc31
730_.htm

Build bar
This stage takes the application source code pulled down in the preceding stage and turns it 
into the broker archive file. In the example pipeline, this is affected by running an IBM App 
Connect base Docker image locally on the CI/CD automation server. A directory with the 
application source is mounted into the container, and the mqsipackage BAR command is run 
to create the BAR. After the BAR file has been retrieved from the mount this local container is 
stopped and deleted. 

In this stage, a push of the BAR file to an artifact repository could happen; however, for the 
example pipeline this has not been implemented.

Build image
The Build Images stage builds a new Docker image from the IBM App Connect base image. 
In this stage the BAR file is retrieved (be this from the CI/CD automation server file system, or 
external artifact repository) then it makes it available for the Dockerfile that build the image. 
The result of this process is an IBM App Connect microservice image. This image is stored in 
the Docker registry on the CI/CD automation server and also pushed to the Docker repository 
on the cloud instance, where the Helm deploy will be able to use it.

Section 2
This section deals with the deployment of the microservice to the first environment, in this 
case a development environment, and the running of a test.

Deploy helm chart to dev
Perform the helm update command to install (the -i flag is specified) or, if the deployment 
already exists, update the deployment of the microservice. Prior to helm upgrade command a 
new values.yaml file is created, which references the IBM App Connect microservice image 
created in Section 1. This new values.yaml is supplied as an argument to the helm upgrade 
command with the ‘-f’ parameter.

Configuration information is picked up from a secret created in the Kubernetes namespace, 
prior to the invocation of the pipeline (see the prerequisites).

Verification test
This stage runs a script that sleeps to wait for the container and the Integration Server to 
initialize. Then the script runs a curl invocation against the Integration Server’s administration 
port. It checks for a correct response which indicates that the Web UI would be rendered in a 
web browser.

The verification test stage can also include the scanning of the new image for vulnerabilities. 
On IBM Cloud Pak this happens automatically when images are pushed the Docker registry 
on the Cloud Pak instance. 
Chapter 7. Field notes on modernization for application integration 469

https://www.ibm.com/support/knowledge/en/SSTTDS_11.0.0/com.ibm.etools.mft.doc/bc31730_.htm


Section 3
This section looks at deployment to a test environment and the running of automated tests.

Deploy helm chart to test
This stage performs the same set of steps as the deployment to the development 
environment. The only differences are that the helm upgrade command will either be pointed 
at a different Kubernetes namespace, or at a different Kubernetes cluster, depending on the 
configuration of the environments.

The values.yaml used for this deployment could be altered to increase the number of replicas 
of the microservice pod, so that heavier non-functional testing can be performed.

Once again, configuration information is picked up from a secret created in the Kubernetes 
namespace prior to pipeline being invoked.

Functional test
This stage runs a functional test against the deployed microservice. In the example pipeline, 
this stage has been left blank, as it is merely to display where this type of test could fit into the 
CI/CD pipeline with IBM App Connect. You might want to spin up a container on Kubernetes 
to host a test harness. Containers could also be provisioned to host stubs as part of the 
testing.

Test cases could be included with the application source (pulled down in stage 1) or these 
could be retrieved from a central test case repository.

Performance test
This stage runs a performance test. Once again, this stage has been left blank in the example 
pipeline.

Section 4
Sets out the steps that happen at the end of the pipeline.

Push image to production image repo
This stage shows that, at the completion of the CI/CD pipeline, the tested IBM App Connect 
microservice Docker image is pushed to a registry, making it available for production 
deployment. This illustrates that this is a Continuous Delivery pipeline, whose purpose is to 
make images that are ready for production deployment, not a pipeline that does the 
deployment to the production environment.

7.5.3  CI/CD pipeline in depth

Figure 7-32 on page 471 shows the concepts of the CI/CD pipeline, up to the first container 
deployment in greater depth. 
470 Accelerating Modernization with Agile Integration



Figure 7-32   In depth look at the CI/CD pipeline: deployment to first environment

The key understandings from this diagram are:

� The infrastructure source and application source are stored separately in different 
repositories. These perform different roles and this is discussed later in this section.

� The build of the BAR file relies on an IBM App Connect base image being available on the 
CI/CD Automation Server.

� The IBM App Connect microservice image created by the pipeline is stored locally on the 
CI/CD Automation Server and pushed to the Cloud Instance

� The helm upgrade command instructs the Helm Tiller to deploy the IBM App Connect 
helm chart, resulting in the microservice IBM App Connect image being deployed in a 
Kubernetes Pod.

7.5.4  Considerations for CI/CD pipelines with IBM App Connect

In this section we discuss considerations for CI/CD pipelines with IBM App Connect.

Triggering the CI/CD pipeline
With automation servers such as Jenkins, you can trigger a build of the pipeline in a multitude 
of ways. Triggering builds based on commits to the application source code repository master 
branch (and/or other branches of your choice) is one way to approach this. Other options 
include the use of a cron job or by polling source code management on a certain interval and 
running a build if changes are detected. 

The answer of the question “How and when should I trigger my pipeline?” is one that will vary 
from one organization to the next, affected by the capacity of their CI/CD automation server to 
run builds and the number of changes they are making to their source code each day.

The example pipeline created for this book is invoked manually.
Chapter 7. Field notes on modernization for application integration 471



Source code: infrastructure and application
The preceding diagrams indicate two separate steps for source code. Firstly, the 
infrastructure source and, secondly, the application source. Both of these should be stored in 
separate source code repositories. These are distinct artifacts and treating them as such 
allows for a more controllable and scalable CI/CD solution.

Separating infrastructure source code from application source code reduces complexity. 
Changes to infrastructure and applications inevitably move at different speeds. Where 
applications can be updated multiple times in a single day, infrastructure normally remains 
comparatively constant. Organizations are unlikely to modify their pipeline structure at the 
same rate that changes are made to applications. 

What artifacts can be built, stored, and reused?
The first stage of a continuous delivery pipeline will normally consist of retrieving the relevant 
source code, for the infrastructure and applications. It will then go on to produce a series of 
artifacts that can be stored, deployed and propagated through the pipeline to a repository 
from which it can be deployed to production.

So far, three main artifacts have been identified that can be built and reused as part of a 
pipeline solution:

� BAR files
� Docker images containing an IBM App Connect microservice
� The working directory

BAR files
The BAR file represents the traditional unit of deployment for IBM App Connect and its 
predecessors. It remains a valuable artifact to store as part of a CI/CD pipeline. It would be a 
reasonable step for BAR files created by the pipeline to be pushed to an artifact repository, 
this way BAR files created by the pipeline could be made available to support personnel, both 
internal to the organization and to IBM support. This has the advantage that BAR file can be 
deployed to support personnel's locally defined Integration Servers. Additionally storing BAR 
files in an artifact repository means that they can be pulled down from the repository and 
deployed independently to an IBM App Connect instance in non-cloud environments. This 
could be especially useful in organization operating a hybrid-cloud environment where some 
integration middleware remains on-premises.

It would make sense that BAR files are pushed to a third repository separate to the 
infrastructure and application source code repositories. This allows a clear delineation 
between source code and built code. Artifact repositories such as JFrog Artifactory and 
Nexus have both been used for this purpose in some implementations.

While storing BAR files that have been created by the pipeline is useful, by itself this does not 
allow us to take full advantage of IBM App Connect’s move to a containerized architecture. 

Docker image containing IBM App Connect microservice
Docker images containing IBM App Connect and a deployed application, the microservice 
image, can now be considered the unit of deployment for a CI/CD pipeline. As part of the 
example pipeline in this section the IBM App Connect microservice image is stored in two 
places: in a Docker registry on the automation server and in a Docker registry on the cloud 
instance. The example also shows that the image can be stored in a further production 
Docker registry after it has successfully progressed through the CI/CD pipeline.

The rationale behind focusing on the microservice image as the central artifact in the CI/CD 
pipeline is that this is the artifact that gets deployed and ran in production. This follows on 
from the ideas discussed in the Continuous Adoption sections of this book. In this scenario 
472 Accelerating Modernization with Agile Integration



developers will locally test their code against IBM App Connect base images. The CI/CD 
pipeline will then build a microservice image. This image eventually ends up being deployed 
to production. Images produced this way can be deployed to different environments as the 
organization deems necessary. All the infrastructure to run the application (except for of the 
configuration secrets and any config maps) is included in this self-contained image.

Support engineers can pull down microservice images and run them locally to inspect their 
behavior without having to worry about differing environment setups. The container they pull 
down will have IBM App Connect that runs on the same platform and same fix pack as the 
container that has seen an issue in production.

While this approach does have advantages in keeping a stable unit of deployment, it does 
place additional upskilling requirements on support and development teams. Both these 
teams will have to gain fundamental Docker skills. In some cases this might not be possible, 
perhaps due to contractual reasons, where support is handled by a third party, or simply due 
to a lack of time and resources. The third approach provides a model that has been used 
successfully, where Docker skills are not widely available,

The working directory
Starting with IBM App Connect version 11 the concept of a working directory for the 
Integration Server was introduced. This directory contains all the configuration information for 
the Integration Server process in addition to all the files for deployed BAR files. The 
mqsicreateworkdir command is used to create this directory:

https://www.ibm.com/support/knowledgecenter/en/SSTTDS_11.0.0/com.ibm.etools.mft.do
c/createworkdircmd_.htm

A pipeline stage could consist of a Jenkins slave container — in which IBM App Connect is 
installed (for example: a base image) — being run on the CI/CD automation server. The 
mqsicreateworkdir command would then be run to create a working directory. Optionally, 
configuration could be deployed into this working directory, such as a new server.conf.yaml 
file and policy files (these can also be deployed via Kubernetes secrets). The BAR file would 
then be unpacked into the run directory by using the mqsibar command. At this stage the 
working directory can be compressed and exported out of the slave container, creating a 
reusable and deployable artifact. This can be stored in a repository in the same way that was 
mentioned for BAR files.

Later in the CI/CD pipeline (or in a separate pipeline entirely) the working directory is 
retrieved from the repository and uncompressed into the IBM App Connect microservice 
Docker container as part of that container’s image build.

An advantage of this approach is that support personnel can pull down compressed working 
directories and then unpack them onto their workstation’s local file system. A simple 
Integration Server command then can be run to start the Integration Server. Unlike with the 
Docker image-centric approach, support engineers do not need to run Docker locally on their 
workstation. This reduces the initial investment required to move to an IBM App Connect on 
Cloud setup. However, it does not offer the same level of assurance that developers and 
support personnel will work with the closest artifact as possible to what is deployed in 
production. For example, a working directory might be created against one fix pack version of 
IBM App Connect. But a support engineer might pull it down to their workstation and run the 
Integration Server with a different fix pack level. With this implementation additional care must 
be taken to manage these factors. For example, you can implement a manual process to 
ensure that developers use an IBM App Connect base image on their workstation that is at 
the latest fix-pack level.
Chapter 7. Field notes on modernization for application integration 473

https://www.ibm.com/support/knowledgecenter/en/SSTTDS_11.0.0/com.ibm.etools.mft.doc/createworkdircmd_.htm


How many pipelines?
The example pipeline provided in this chapter shows a single pipeline that manages the 
progression from source code up to a production Docker repository. This is a valid pattern; 
however, it is not the only one. Other patterns might include having the creation of the BAR 
file in a separate pipeline from the creation of the microservice image. The advantage here is 
that images can be built selectively - with a specific BAR file (not every BAR file build needs 
to result in the building of an image). This also opens the opportunity for the deployment of 
multiple BAR files into one microservice image. Further CI/CD pipelines might be required in 
order to orchestrate the deployment of an integration test environment, in which multiple IBM 
App Connect microservices might be deployed alongside other types of services. 

Credentials - secrets and vaults
There are several configuration objects for IBM App Connect that require credentials and 
other sensitive information to be provided:

� Policies can contain credentials for establishing secure connections to data sources like 
JDBC

� Keystores

� Truststores

� mqsisetdbparms storing credentials for keystores and data sources like ODBC

� Web user account IDs and passwords

The IBM App Connect helm charts on ot4i show how you can generate a Kubernetes secret 
to hold the preceding information:

https://github.com/ot4i/ace-helm/tree/master/ibm-ace/scripts

The use of a secret to hold this information does mean that any user with access to the Hem 
Tiller can access the contents of the secret (https://github.com/helm/helm/issues/2196). 
Therefore, in order to proceed with this model, appropriate steps should be taken to ensure 
that only administrators or cluster administrators have access to the tiller.

Products like Hashicorp Vault provide extra functionality to enable the creation and 
maintenance of secrets.

Testing in the CI/CD pipeline
Automated testing is a central part of the CI/CD pipeline. It is of critical importance to the 
whole endeavor, making sure that code releases actually work and do not cause any 
breakages further down the line. 

Advantages of automated testing in the CI/CD pipeline
https://smartbear.com/learn/automated-testing/the-continuous-development-pipeline/

The idea of automated testing is not new. To many organizations this approach has been part 
of their test cycle for a number of years. However, the introduction of containerization and the 
CI/CD pipeline does offer the opportunity to run these tests on a far more frequent basis. And 
the environment is more controlled than is normally the case in an on-premises setup. 

For example, in an on-premises setup, automated tests might fail due to the incorrect setup of 
a shared test environment, where artifacts for the previous test run were not cleaned up 
properly. The risk of such a situation happening with containers is reduced, enabling a far 
tighter feedback loop - test setup takes far less time, meaning that tests can be run more 
frequently.
474 Accelerating Modernization with Agile Integration

https://github.com/ot4i/ace-helm/tree/master/ibm-ace/scripts
https://github.com/helm/helm/issues/2196
https://smartbear.com/learn/automated-testing/the-continuous-development-pipeline/


It is important to mention this stage that manual testing, of course, still has a place. It still 
plays a valuable part in many test cycles. Exploratory testing, for example, is difficult to 
automate, and will remain a manual task. 

Types of testing in the CI/CD pipeline
Different organizations will have varying ideas and thoughts on what types of testing to 
include in the CI/CD pipeline for their IBM App Connect microservices. Such tests could 
include a simple verification test (check that the IBM App Connect container is running), 
integration test, component test and performance test. The decision will be based on the 
answer to this question: What testing does your organization believe needs to be performed 
to make a microservice image ready for production repo? 

Notice that Unit test has been left out of this list. In the example provided with this chapter, it 
is assumed that developers have performed unit testing locally on their workstation, for 
example, by using the IBM App Connect Flow Exerciser. 

7.5.5  Practical example 

As part of this book an example CI/CD pipeline for IBM App Connect has been developed.

This scenario was developed with a Jenkins server installed on an Ubuntu virtual machine. 
The Ubuntu instance sat outside of the Kubernetes cluster to which it was deploying the helm 
chart. The Kubernetes cluster was hosted on IBM Cloud Pak for Integration, but the concepts 
are equally applicable to Red Hat OpenShift. 

Prerequisites
Your Jenkins server must have the following elements: 

� Docker installed locally.

� Install the Cloud Pak and OpenShift command-line interfaces (CLIs) as specified in 5.1.4, 
“Getting access to IBM Cloud Pak for Integration for the exercises” on page 145.

� The jenkins user (the user that your Jenkins server runs as) must be able to run Docker 
commands on the server. In this example the jenkins user was given NOPASSWD sudo 
permission so that it could run Docker commands. In a live environment an alternative 
strategy should be employed to make sure that the appropriate security levels are in 
place.

� You must have uploaded an IBM App Connect only base Docker image to your OCP 
registry. This can be built based on the instructions on the ACE-docker ot4i Git repository:

https://github.com/ot4i/ace-docker

� IBM App Connect override-able configuration must be deployed in a secret on your 
Kubernetes workspace prior to running this pipeline. The documentation on the following 
web page shows how to do this by using a script supplied by IBM (see section “Installing a 
sample image”' and the generateSecrets.sh script.):

https://github.com/ot4i/ace-helm/blob/master/ibm-ace/README.md

Restrictions
The example uses a non-secure mechanism for administering credentials, intended only for 
use in a sandbox environment. The Jenkins server on which the example was developed had 

Note: At the time of writing the secret name must be ace-secret-dev, as this is what is 
hard-coded in the value.yaml.
Chapter 7. Field notes on modernization for application integration 475

https://github.com/ot4i/ace-docker
https://github.com/ot4i/ace-helm/blob/master/ibm-ace/README.md


three files defined locally (not in source control), with permission locked down to the jenkins 
user only. These files are:

� git.txt - holds a personal access token for GitHub. Used when the pipeline pulls down 
the application source.

� oc-login.sh - logs the shell into the Cloud Pak instance and sets up the helm and 
Kubernetes command-line environment.

� dockerlogin.sh - logs the shell into the Docker registry hosted on the Cloud Pak instance.

In order to run the pipeline you will need to create your own solution for managing these 
credentials.

Links
Two GitHub repositories exist as part of this example pipeline:

� https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Int
egration-CICD-infra

This repository contains the infrastructure source code and the Jenkinsfile.

� https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Int
egration-CICD-appsrc-db2

This repository contains sample application code, to create a microservice that connects 
to a Db2 database.

Perform a git clone to make your own copies of these repositories and then push them to 
your own Git source control.

Scripts
The infrastructure source code repository contains a number of resources that describe and 
execute the pipeline.

Jenkinsfile
The Jenkinsfile (a type of declarative pipeline) has nine stages that correspond to the parts of 
a CI/CD pipeline build that were discussed earlier in this section:

1. Clone - pulls the infrastructure source code from GitHub to a working directory on the 
Jenkins server.

2. Build and Verify BAR File - runs the pullSource.sh and barBuild.sh scripts
3. Build Microservice Docker Image - runs the dockerBuild.sh script
4. Deploy Microservice to Dev Environment - runs the deployChart.sh script
5. Verification Test - runs the pingService.sh script
6. API-Test - runs the apiTest.sh script
7. Deploy Microservice to Test Environment - example stage that does not run. Would invoke 

deployChart.sh to deploy to a different Kubernetes namespace
8. Functional Test - example stage for a functional test
9. Performance Test - example stage for a performance test
10.Commit to Production Docker Repo - example stage to show when a test IBM App 

Connect microservice Docker image would be pushed to a production registry, ready for 
deployment.

The Jenkinsfile has the following variables that must be configured depending on the micro 
service that is to be built:

� applicationName - name of the application, default of 'ace-db2-test-01'

� applicationSourceRepoName - name of the Git repository containing the IBM App 
Connect application source, default of 'ace-db2-app-source-02'
476 Accelerating Modernization with Agile Integration

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration-CICD-infra
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration-CICD-appsrc-db2
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration-CICD-appsrc-db2
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration-CICD-appsrc-db2
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration-CICD-appsrc-db2


� helmChartName - default of 'ibm-ace-server-icip-prod'

� helmChartVersion - default of '1.1.2-icp4i-jenkins-01

� aceBaseImageName - base IBM App Connect Docker image to build FROM (also used to 
run container for BAR file build), defaults to 'ace-base-11004'

� aceBaseImageTag - tag of IBM App Connect base image, default of latest

pullSource.sh
Downloads IBM App Connect application source code from a Git repository specified in the 
applicationSourceRepoName variable in the Jenkinsfile.

barBuild.sh
Builds a BAR file from source code retrieved by pullSource.sh, by temporarily running an IBM 
App Connect container locally on the Jenkins server with the source code mounted into that 
container.

dockerBuild.sh
Builds a new Docker image FROM the base image, adding in the BAR file built by barBuild.sh.

deployChart.sh
Performs Helm deployment. A new values.yaml file is created for each deployment, 
referencing the image made for the build. The secret containing the IBM App Connect 
override-able information is currently hard coded in the values.yaml as 'ace-secret-dev'.

pingService.sh and apiTest.sh
These scripts perform two tests, one to ping the service's admin port and one to make a 
series of calls to the API by using curl.

Set up the pipeline in Jenkins
After you have installed the prerequisites and configured a solution to manage credentials to 
your application source code repository, Docker registry and your Cloud Pak CLI tools you 
can proceed to set up the example pipeline in Jenkins.

1. Sign in to your Jenkins server and on the home page click New Item. See Figure 7-33 on 
page 478.
Chapter 7. Field notes on modernization for application integration 477



Figure 7-33   Set up the pipeline in Jenkins -1

2. On the next panel, enter a sensible name, select Pipeline and click OK as shown in 
Figure 7-34 on page 479.
478 Accelerating Modernization with Agile Integration



Figure 7-34   Set up the pipeline in Jenkins -2

3. The next page displays. Scroll down to the Pipeline section. In the Definition field click the 
drop-down menu and select Pipeline Script from SCM. See Figure 7-35.

Figure 7-35   Set up the pipeline in Jenkins -3

4. When this has been selected a new section appears. Configure the following options:
Chapter 7. Field notes on modernization for application integration 479



� SCM: Git

� Repository URL: add in the URL for your copy of the infrastructure repository.

� Select the Jenkins credentials you have configured to allow connectivity to the Git 
repository. 

If yo do not already have this configured you can click Add. Select the Username and 
Password option, where the username is your username for the Git Repository and the 
password is a Git personal access token.

� Leave the branch specifier as */master.

� Specify the Scriptpath as Jenkinsfile.

5. Click Save. See Figure 7-36.

Figure 7-36   Set up the pipeline in Jenkins -4

Your pipeline’s home page is displayed.

Running the example pipeline
1. To run the example pipeline click Build Now. See Figure 7-37 on page 481.
480 Accelerating Modernization with Agile Integration



Figure 7-37   Run the pipeline in Jenkins -1

The build will be initiated and it will display in the Build History section of the build’s home 
page as shown in Figure 7-38.

Figure 7-38   Run the pipeline in Jenkins -2

2. Click the build number to see more information about the build. The build page will be 
displayed. Click Console Output to see the log from the build as shown in Figure 7-39 on 
page 482.
Chapter 7. Field notes on modernization for application integration 481



Figure 7-39   Run the pipeline in Jenkins -3

3. This will display a log file from the build, where you will be able to see the output of the 
various scripts executed in the build. For example, in the image we can see the execution 
of the barBuild.sh script in Figure 7-40 on page 483.
482 Accelerating Modernization with Agile Integration



Figure 7-40   Run the pipeline in Jenkins -4

The overall status of the build is displayed on pipeline home page as shown in Figure 7-41 on 
page 484.
Chapter 7. Field notes on modernization for application integration 483



Figure 7-41   Run the pipeline in Jenkins -5

4. Access the OpenShift Container Platform Web UI → Go to Application Console → 
Select the namespace where the helm chart was deployed. Go to Applications → 
Services → Select the service that contains the word "jenkins". Note the NodePort 
mapping to the ACE web UI. See Figure 7-42.

Figure 7-42   Run the pipeline in Jenkins -6

5. The Web UI will be accessible at the following address: https://<cluster IP/FQDN>:<Web 
UI NodePort>.The IBM App Connect Web UI will launch in a browser session. The 
application deployed as part of the pipeline will be displayed on the Web UI. See 
Figure 7-43.
484 Accelerating Modernization with Agile Integration



Figure 7-43   Run the pipeline in Jenkins -7

7.6  Continuous Adoption for IBM App Connect

Continuous Adoption, also known as Evergreening, is the automation and regular 
implementation of updates and changes to software and packages. Where Continuous 
Integration and Continuous Delivery normally have been applied to applications developed by 
an organization, Continuous Adoption applies to the infrastructure and dependencies upon 
which those applications are deployed.

The rationale and benefits of Continuous Adoption are discussed in greater detail in 4.2.11, 
“Continuous Adoption” on page 98.

Additionally, the following article is a useful resource to learn more about Continuous 
Adoption in the context of Integration Middleware:

https://medium.com/@jvdschot/continuous-adoption-keeping-current-with-accelerating
-software-innovations-33233461181a

7.6.1  What does Continuous Adoption apply to in IBM App Connect?

In the context of IBM App Connect, Continuous Adoption encompasses the regular adoption 
of the following artifacts:

� Fixpacks

� APAR

� New versions

With on-premises installations, the application of new fix packs, APARs and moving to new 
versions present significant process challenges. Upgrades to new fix packs, for example, 
generally are applied to all integration servers on an integration node in one go. This requires 
a maintenance window to be agreed to across all business teams, so that all Integration 
servers on the Integration Node can be restarted to use the new binaries. In many 
organizations windows of this type can be pushed back in favor of releasing new functionality 
instead. The result is that updates to the infrastructure accumulate until a “must fix” situation 
is encountered. 
Chapter 7. Field notes on modernization for application integration 485

https://medium.com/@jvdschot/continuous-adoption-keeping-current-with-accelerating-software-innovations-33233461181a


Applying fix-packs and APARs, as well as migrating to new product versions, under these 
circumstances, can be highly pressurized. Keeping the infrastructure up to date is 
increasingly associated with slowing down deliveries and not with unlocking new functionality 
or keeping the system in optimum health.

The move to IBM App Connect in a container-based architecture provides an opportunity to 
turn this paradigm on its head. It does this by adopting new fix-packs, APARs, and product 
versions through the same CI/CD pipeline that produces an organization’s containerized 
microservices. 

7.6.2  How can Continuous Adoption be implemented with IBM App Connect?

Implementation of Continuous Adoption can be achieved by the combination of ‘base’ Docker 
images, containing a generic IBM App Connect installation, plus a CI/CD pipeline which 
layers IBM App Connect integrations on top of this base.

Base Images and Application Images
A base Docker image of IBM App Connect is a container image that contains no integration 
code. It is built at a specific IBM App Connect fix pack level, with any relevant APARs and 
PTFs installed into it.

The role of the base image is to provide the foundation on top of which images containing an 
integration can be built. This is achieved by layering Docker images. Two separate 
Dockerfiles exist for this purpose: one for the base build and one for the integration image 
build, which references the image that is created from the first Dockerfile (Table 7-1).

Table 7-1   Example IBM App Connect image architecture

The IBM App Connect Docker section on ot4i (Open Technologies for Integration) provides a 
template for this type of architecture:

� https://github.com/ot4i/ace-docker - shows how to build a container image without any 
application beng deployed. This can be considered a ‘base’ image.

� https://github.com/ot4i/ace-docker/tree/master/sample - shows how to build an 
image deploying sample applications on top of the base image.

Figure 7-44 on page 487 shows an example FROM statement inside a Dockerfile for building 
an application image.

Image type Explanation

Base image Product binaries installed at specific fix pack level.
Any APAR fixes not included in fix pack also installed.
IBM management scripts (container management and health checks)

Application image Built on top of the base image by using ‘FROM’ statement in Dockerfile.
Application code (via BAR file or copy of compiled code to working directory). a

a. Run-time configuration is not stored in the Docker image. Instead, it is stored in Kubernetes 
secrets and loaded into the container at startup.
486 Accelerating Modernization with Agile Integration

https://github.com/ot4i/ace-docker
https://github.com/ot4i/ace-docker/tree/master/sample


Figure 7-44   Sample IBM App Connect application image Dockerfile

Base images should be produced in your organization each time a new fix pack for IBM App 
Connect is released. These base images should then be pushed to a Docker registry that is 
accessible by developer’s laptops and the Kubernetes platform

APARs and base images
When an APAR fix needs to be applied before the next fix pack a new base image will need to 
be created. This new base image, with the APAR fix installed, can be created one of two 
ways:

� From the latest base image

� Created as part of a new base image.

FROM the base image
In this method, an image containing the APAR fix is created FROM the latest base image. 
This avoids creating a new base image from the ground up, saving storage. Additionally this 
provides flexibility, as the APAR fix can be applied to different fix pack base images that your 
organization has available.

For an example of how to build IBM App Connect base images with APAR fixes installed, see 
the following blog post:

https://developer.ibm.com/integration/docs/app-connect-enterprise/tutorials/instal
ling-fixpacks-fixes-iib-ace-containers/

Created as part of a new base image
In this method, the APAR fix is expanded into the tar file that contains the IBM App Connect 
binaries. A brand-new base image is then created by using this modified binaries file. 

To see details on how to create a base image with an APAR fix applied with this method see 
the IBM App Connect Docker section on the ot4i GitHub:

https://github.com/ot4i/ace-docker/blob/master/README.md

Navigate to the section “Building a container image which contains an IBM Service provided 
fix for ACE”. The following is detailed:

“You may have been provided with a fix for IBM App Connect Enterprise by IBM Support. This 
fix will have a name of the form 11.0.0.X-ACE-LinuxX64-TF12345.tar.gz. In order to apply 
this fix, follow these steps.”
Chapter 7. Field notes on modernization for application integration 487

https://developer.ibm.com/integration/docs/app-connect-enterprise/tutorials/installing-fixpacks-fixes-iib-ace-containers/
https://github.com/ot4i/ace-docker/blob/master/README.md


1. On a local system extract the IBM App Connect archive tar -xvf ace-11.0.0.5.tar.gz.

2. Extract the fix package into expanded IBM App Connect installation tar -xvf 
/path/to/11.0.0.5-ACE-LinuxX64-TF12345.tar.gz --directory ace-11.0.0.5.

3. Tar and compress the resulting IBM App Connect installation tar -cvf 
ace-11.0.0.5_with_IT12345.tar ace-11.0.0.5 gzip ace-11.0.0.5_with_IT12345.tar.

4. Place the resulting ace-11.0.0.5_with_IT12345.tar.gz file in the deps folder and when 
building with the build-arg to specify the name of the file: --build-arg 
ACE_INSTALL=ace-11.0.0.5_with_IT12345.tar.gz.

Application Development with Continuous Adoption
The use of Docker containers makes it a lot easier for developers to test code locally on their 
workstation in an environment that is as close as possible to production. See Figure 7-45.

Figure 7-45   Overview of Continuous Adoption with IBM App Connect, for development and CI/CD pipeline

The use of Docker containers makes it a lot easier for developers to test code locally on their 
workstation in an environment that is as close as possible to production. 

Developers can pull down IBM App Connect base images from the organization's Docker 
repository and run them locally on their workstations. The IBM App Connect Toolkit is still 
used to develop integrations. However, instead of using a locally defined Integration Server to 
test their code, developers can connect their Toolkit to the Integration Server in the base 
image container that was pulled to their workstation.

These base images provide the basis of the microservice images that eventually get 
deployed to production. So, the application development and local testing is done against an 
Integration Server that is far closer to production (and all the route-to-live environments) than 
might otherwise be the case. 

FROM ACE-11005:latest

FROM ACE-11004:latest
488 Accelerating Modernization with Agile Integration



CI/CD pipelines for IBM App Connect with Continuous Adoption 
In the context of Continuous Adoption, the CI/CD pipeline provides the mechanism for new 
integration images to be built on top of a range of base images. Then, the set of images is 
tested and propagated to a production Docker registry (from which the production 
deployment of new integrations is managed).

Further information on the CI/CD pipeline can be found in section 7.5.1, “Continuous 
Integration Delivery and Deployment” on page 467.

Figure 7-45 shows the stages of Continuous Adoption for development and deployment with 
IBM App Connect:

1. Base Docker Images are created by the organization each time a new IBM App Connect 
fix pack is made available by IBM.

2. Developers issue a Docker pull command to retrieve a copy of the image to their 
workstation.

3. Developers install the latest version of the IBM App Connect Toolkit onto their workstation 
and connect these to running instances of the IBM App Connect container. That way, code 
is developed against the latest fix pack and against an IBM App Connect instance that is 
as close as possible to production.

4. New branch is created each time a new base image arrives.
5. IBM App Connect integration Docker image builds contain a FROM statement at the start 

of their Dockerfiles. The statement references the IBM App Connect base image that 
corresponds to that branch.

6. Continuous Delivery pipeline continues to deploy and test image until it is pushed to 
production Docker registry.

7. The latest fix pack sits on the master branch. In this example, when fix pack 11.0.0.6 
arrives, the 11.0.0.6 will be the new master and 11.0.0.5 will move to a branch called V1.

Further considerations for Continuous Adoption
The following are further considerations for Continuous Adoption:

Microservice versioning and naming
Each organization will likely have its own existing versioning and naming system for 
applications prior to the implementation of Continuous Adoption. These should be modified, 
after the following points have been considered:

� Can you tell which base image each integration image is built upon from its name or tag?

An example image and tag could be: <app-name>:<base image fix pack><datestamp> 
ace-db2-app:1100407302019

� Does your organization consider an integration built against a new base image, but 
without any integration code changes, to be a minor or major version change?

� Will you deploy a new Kubernetes service, with a unique name (for example with a minor 
or major version in the name) for each new microservice?

Below is an example of versioning that is used to show how new base images can be treated 
in a versioning system, relative to other types of code changes:

� Version 0.1 - built against ace-base-11004 - initial app

� Version 0.1 - built against ace-base-11004 - non-functional code update 1

� Version 0.2 - built against ace-base-11005 - non-functional code update 1

� Version 0.3 - built against ace-base-11005 - non-functional code update 2

� Version 1.0 - built against ace-base-11005 - functional code update 1

� Version 2.0 - built against ace-base-vNext-FP1 - functional code update 1
Chapter 7. Field notes on modernization for application integration 489



In this example non-functional code changes (that do not change the api) and updates to the 
fix pack used in the base image constitute a minor version change. Functional updates to the 
code (which change the api) and a base image, which contains a new version of IBM App 
Connect, constitute a major version change.

Depending upon what is decided, you might have to modify the IBM helm charts for IBM App 
Connect. For example, you might do this to modify the service name, which by default is the 
same as the application name.

Service rollout
Consideration needs to be given to how new versions of integrations are deployed to test and 
to production environments. In order to continuously adopt integrations built on new base 
images, a reliable mechanism will need to be used to migrate requests from one version of 
the microservice to another. The use of a service mesh like Istio can allow the easy canary 
deployment of new services and is discussed in section 3.4 with an example shown in section 
4.1.3.

7.7  High Availability and Scaling considerations for IBM App 
Connect in containers

This section discusses considerations regarding High Availability and scaling of IBM App 
Connect in containers.

7.7.1  Overview

Containerizing your applications brings the key benefit of being able to elastically scale to 
meet demand. The driving force for moving your applications to containers should not be 
expectations of improving how the applications run, but more to enable elastic scalability, 
which containers allow us to achieve.

When the load on your integration server increases due to an increased volume of messages, 
one of the impacts you would observe is to the CPU utilization and the throughput rate. In 
such cases, you might want to scale up your integration flows horizontally to cater for the 
additional load. That way, the CPU utilization is within limits and eventually improves the 
message throughput rate. Also, when the peak load times are over and the message volumes 
are less, you would want to scale down the number of integration servers to save on CPU and 
memory resources. 

To address this requirement, Kubernetes provides scaling policies that allow applications to 
adapt to changing conditions, for example, auto-scaling based on the % CPU utilization for a 
given deployment. As traffic and workload increases for an application, scaling the application 
allows it to keep up with user demand. Running multiple instances of an application 
distributes the traffic to all of them. Additionally, after multiple instances of an application 
running are available, rolling updates can be performed without downtime.

7.7.2  Scaling

Because we can run IBM App Connect in a Docker container in a Kubernetes environment, 
we can take advantage of one of the main benefits of the Kubernetes container orchestration 
engine. Specifically, we can use dynamic scheduling of containers to greater reliability and 
stability to distributed applications.
490 Accelerating Modernization with Agile Integration



As discussed in previous sections, there are three main IBM App Connect container images 
and Figure 7-46 on page 491 outlines possible topologies that can be enabled through helm 
charts and run by Kubernetes.

Figure 7-46   Topologies for IBM App Connect Container Images

We can consider two broad topologies for the container images;

� In the first topology, the first two container images from the left in the preceding figure 
have only the IBM App Connect Integration Server or include an MQ Client to provide the 
dynamic scalability for the pods. The Replica Set in this case is shown as ‘n’. Replica Set 
is the mechanism that is built into the Kubernetes environment and is used to replicate the 
Pods. Using these two images allows completely elastic scaling, based on the number of 
replicas that we have set. 
This topology is completely stateless. There is no need to store state to the disk if you are 
restarting the containers. For many modern integrations, this approach provides 
completely sufficient scaling, for example, when exposing REST APIs. The responsibility 
of storing the state falls to MQ, even when we use MQ Client. So no state is being held in 
the Integration Server.

� In the second topology, shown on the right half of the preceding figure, the image contains 
a local Queue Manager. This means that it be persisting some messaging on local disk. 

However, multiple scenarios are possible here:

� We can still take an approach for elastic scaling with non-persistent local MQ, as shown. 
No persistent storage is provided if the Node fails and needs to be restarted. Yet this 
approach can still be sufficient, for example, if we do a ‘read’ with an Aggregation node. 
The ‘read’ can be initiated again after the restart. 

� The next approach represents a typical topology we see today. It could be statically 
scaled, similar to an HA configuration, where the scaling is vertical by adding more 
instances.
Chapter 7. Field notes on modernization for application integration 491



� The last topology on the right shows an advanced use case where you might want to scale 
up your underlying MQ, for example, to increase the throughput. By using Stateful sets, 
each instance will have its own IP address and we can load-balance between them. 
However, more manual scaling of the environment will be needed because this scenario 
requires a local Queue Manager.

As you move towards modernizing your Integrations, you might find that the larger number of 
your Integrations do not need a local Queue Manager. So you can move them to the 
horizontal elastically-scaling domain.

7.7.3  High Availability

One of the foundational assumptions about an application’s production readiness is that it 
must meet the requirements for availability. Although designing applications for high 
availability is out-of-scope for this book, one aspect of availability (the ability to handle 
dynamic demand or scalability) is particularly relevant to cloud native applications. 

With the ability to run IBM App Connect in Docker and Kubernetes environments we can take 
advantage of one of the main benefits of the Kubernetes container orchestration engine, for 
example how it brings greater reliability and stability to distributed applications, through the 
use of dynamic container scheduling.

In a containerized world there are standardized ways to declaratively define an HA topology 
(Helm Charts). Furthermore, the components that enable the high availability such as load 
balancers and service registries do not need to be installed or configured because they are a 
fundamental part of the platform. High-availability policies are built into Kubernetes, and 
these can be further customized by using standard configuration techniques.

At the application level it is the pods that provide high availability. Kubernetes allows you to 
run multiple pods (redundancy) and in the event of one of the pods or containers failing, 
Kubernetes will spin up a replacement pod. This way you can ensure the availability of your 
services at all times.

When configuring an IBM App Connect helm chart, we can define the values for the 
configurable parameters of your helm chart. Along with various Integration Server related 
parameters, you will find an option called ‘Replica Count’. This is the count that represents 
the number of pods of your application will have running all the time. You can set this value to 
1 or more. By defining the number of replicas for your IBM App Connect deployment, 
Kubernetes platform ensures that the defined number of pods are always running.
492 Accelerating Modernization with Agile Integration



7.8  Migrating centralized ESB to IBM App Connect on 
containers

In this section, we discuss the practical considerations for migrating your centralized ESB 
topology into more cloud native style deployment by using containers.

7.8.1  Overview

A centralized ESB can simplify consistency and governance of implementation. However, 
many organizations have more fluid and dynamic requirements to manage. And one part of 
the organization might be under pressure to implement integration based on cloud-native 
technologies and agile methods that are being used in other parts of the organization.

A more fundamental change is the continued focus on enabling container-based deployment 
of the on-premises runtime. Containerization is not mandatory for v11 of IBM App Connect. 
You can upgrade the runtime only, retaining your existing Integration Node/Integration Server 
topology, and benefit from many fundamental enhancements in the new version. However, 
containerization and the associated move to a more cloud-native approach has many 
advantages. The advantages include simpler deployment build pipeline, isolation/decoupling 
between integrations, consistency across environments, portability, standardized 
administration and monitoring, and common capabilities to enable non-functional 
characteristics such as elastic scaling and high availability and self-healing. 

Several other benefits of cloud native deployment are already discussed in 7.1.2, “Adoption 
path options” on page 434. Another important aspect to consider while migrating to 
containerized environment is the grouping criteria for integrations. Section 7.2, “Splitting up 
the ESB: Grouping integrations in a containerized environment” on page 441 describes 
grouping criteria that you can use to decide which integrations could/should stay together, 
and which ones must be separated from one another.

Runtime work directory structure changes in IBM App Connect V11
The architecture change in IBM App Connect V11 that introduces independent integration 
server has brought in several changes to the runtime directory structure. Therefore, it is 
important to understand how the runtime resources and configuration in IIB maps to IBM App 
Connect V11. For example, the registry, resource manager configuration, integration 
node/server configuration, configurable services in IIB are now defined in server.conf.yaml 
file. Policies replace configurable services in IBM App Connect. The deployed artifacts are 
stored under the run directory.

Important: Since the writing of this IBM Redbooks publication, the IBM Cloud Pak for 
Integration has embraced Kubernetes Operators (https://coreos.com/operators/). This 
significantly simplifies how components such as an Integration Server are installed and 
maintained, extending the features provided by Helm. There is more information and an 
excellent video demonstrating this new capability here:

https://developer.ibm.com/integration/blog/2020/06/28/ibm-app-connect-operator-
1-0-is-now-available/

It does unfortunately mean that some of the instructions describing the deployment of App 
Connect Enterprise in containers within this section are now out of date, and will need to 
be adapted to the use of operators. We may well look to update the book, but in the mean 
time, refer to the product documentation to find information on the new features.
Chapter 7. Field notes on modernization for application integration 493

https://coreos.com/operators/
https://developer.ibm.com/integration/blog/2020/06/28/ibm-app-connect-operator-1-0-is-now-available/


Figure 7-47 on page 494 shows how the runtime work directory structure of IIB maps to IBM 
App Connect. 

Figure 7-47   Resource mapping between IIB and IBM App Connect 

In the subsequent sections of this chapter we primarily focus on the containerization aspects 
of IBM App Connect and discuss configuration requirements for some of the commonly used 
endpoints in integration flows. 

7.8.2  Considerations for IBM MQ based integrations in containers

The question of whether IBM App Connect requires a local Queue Manager becomes more 
pertinent as we move to container-based deployment and we explore installation of 
integrations in a more granular way. There are two very different reasons IBM App Connect 
makes use of IBM MQ:

� As an asynchronous messaging provider
� As a co-coordinator for global (two-phase commit) transactions, aggregation nodes, EDA 

nodes.

In 7.3, “When does IBM App Connect need a local MQ server?” on page 452 we have already 
discussed in detail this topic:

When do we need a local Queue Manager and when can we manage without it?

So now, you are in a position to decide what option you want to use to deploy your set of 
integration flows. Then, you can determine the next steps for deployment. In the following 
section we describe the configuration and procedure for both the options. Specifically, we 
describe these examples: 1) Deployment of an integration flow in a container with an 
associated local queue manager and 2) Integration flow in a container that accesses a 
remote queue manager by using MQ client connection.

Let’s first look at the different options of Docker images you have with IBM App Connect and 
MQ.
494 Accelerating Modernization with Agile Integration



Docker Image Options for IBM App Connect and MQ
Figure 7-48 shows a chart with various combinations of IBM App Connect Integration server 
Docker images in context of MQ and the key characteristics for each of the options. This can 
help in deciding which image type to be used for deploying your integration flows.

Figure 7-48   Docker image options for IBM App Connect and MQ

Connection protocol between IBM App Connect and MQ
Figure 7-49 shows how IBM App Connect and MQ communicate with each other depending 
on the deployment pattern, for example IBM App Connect and MQ within the same container 
or IBM App Connect and MQ in different containers.

Figure 7-49   IBM App Connect and MQ connection protocol

Now that we have reviewed the key fundamentals of IBM App Connect and MQ connectivity 
and deployment options, let’s go through the step-by-step procedure to deploy an integration 
flow with an associated local queue manager and another example with integration flow that 
accesses a remote queue manager by using MQ client connection.

Deploying an Integration Server with Local Queue Manager 
If your use case requires a local MQ server for your integration flows, you will require to 
deploy an IBM App Connect and MQ Server in the same container. In this section, we 

6

Docker Image

Integration Server

Docker Image

Integration Server

MQ Client

Docker Image

Integration Server

Local Queue Manager

MQ connectivity Yes (HTTP API) Yes (client binding) Yes (server binding)

1PC for MQ No Yes Yes

EDA nodes No No Yes

2PC No No Yes

Horizontally scalable Yes Yes Yes
(with loss of sequencing)

Persistent volume Not required Not required Required 
(if durability desired)

Start up Fast Fast Slower

Disk space Smallest Medium Largest

Pod

Container
Integration Server

Queue Manager

“server” 
connection

(IPC) 

Pod

Container

Integration Server

Pod

Container

Queue Manager

“client” 
connection
(TCP/IP)

TCP/IP = Network based inter-communication
IPC  = Inter Process Communication (via shared memory)
Chapter 7. Field notes on modernization for application integration 495



illustrate the step-by-step procedure for deploying an IBM App Connect integration server 
with a local queue manager by using a helm chart.

1. From your IBM Cloud Pak for Integration, log in to IBM App Connect dashboard, and click 
Add Server as shown in Figure 7-50.

Figure 7-50   Deploy new integration server from IBM App Connect dashboard

2. Select an existing BAR file if it was previous added to the dashboard or add a new BAR 
file as shown in Figure 7-51 on page 496.

Figure 7-51   Add new BAR file or select existing BAR file for deployment

3. Select the Namespace to which you want to deploy your integration server and copy the 
Content URL as shown in Figure 7-52 on page 497.
496 Accelerating Modernization with Agile Integration



Figure 7-52   Content URL with the location of BAR file

4. Click Download configuration package. It downloads a config.tar.gz file. 

5. Save the file on your system and unpack it. It provides a set of files as seen in Figure 7-53 
on page 497, which you can use for dynamic configuration of your IBM App Connect 
integration server.

Figure 7-53   List of files in config package
Chapter 7. Field notes on modernization for application integration 497



Table 7-2 on page 498 description of files in the config package.

Table 7-2   Description of the files

6. If you want to create some local MQ queues that your integration flows can use for GET or 
PUT operations, update the mqsc.txt with the list of mqsc commands to define the local 
queues. For example, to create local queues called ‘IN’ and ‘OUT’, update the mqsc.txt file 
as:

DEFINE QLOCAL('IN')
DEFINE QLOCAL('OUT')

7. There are several other files in the downloaded configuration package such as 
serverconf.yaml and odbc.ini, which customer can update, depending on their other 
configuration requirement.

8. After the required config files are updated on your local filesystem, you need to generate 
the Kubernetes secret to wrap them in the same namespace as integration server is being 
deployed to.

File Description

adminPassword.txt An admin password to set for the MQ queue manager

appPassword.txt An app password to set for the MQ queue manager 

keystore-mykey.crt A text file that contains a certificate file in PEM format. This will be 
imported into the keystore file, along with the private key. The file name 
must be the alias for the certificate in the keystore, with the suffix .crt.

keystore-mykey.key A text file that contains a private key file in PEM format. This be 
imported into the keystore file, along with the certificate. The filename 
must be the alias for the certificate in the keystore, with the suffix .key

keystore-mykey.pass If the private key is encrypted, then the passphrase can be specified in 
a file with the file name of alias with the suffix .pass.

keystorePassword.txt A password to set for Integration Server’s keystore.

mqsc.txt An mqsc file to run against the queue manager

odbc.ini An odbc.ini file suitable for the Integration Server to use when 
connecting to a database.

policy.xml Contains policies to apply.

policyDescriptor.xml Policy descriptor file.

serverconf.yaml Server.conf.yaml for integration server. It gets copied to overrides 
directory of integration server.

setdbparms.txt Multi-line file that contains <ResourceName> <userid> <password> to 
pass to mqsisetdbparms command.

truststoreCert-mykey.crt A text file that contains a certificate file in PEM format. This will be 
imported into the truststore file as a trusted certificate authority's 
certificate. The file name must be the alias for the certificate in the key 
store, with the suffix .crt. The alias must not contain any whitespace 
characters.

truststorePassword.txt A password to set for IntegrationServer’s truststore.

generateSecrets.sh A script to generate Kubernetes secrets on the basis of the preceding 
files.
498 Accelerating Modernization with Agile Integration



You can generate a Kubernetes secret by using the generateSecrets.sh script that is 
provided in the config package. The generateSecrets.sh script will take all the files in that 
directory and turn them into a Kubernetes secret. When the Docker container starts and 
the container is deployed, it loads the secret and extracts the parts. And it puts them into 
the appropriate paths of integration server work directory, such as placing server.conf.yaml 
in the overrides directory of the integration server's workdir. 

At the time of writing this book, the generateSecrets.sh script in the configuration 
package did not have a command-line option to specify the namespace in which you want 
to create the secret. So you might need to modify the generateSecrets.sh script to include 
command-line parameter for namespace. For example, modify the generateSecrets.sh 
script as:

TARGET_SECRET_NAMESPACE=$2

kubectl create secret generic ${TARGET_SECRET_NAME} ${SECRET_ARGS} -n 
$TARGET_SECRET_NAMESPACE

Ensure that you have logged in to your kubectl environment and then run the script as 

generateSecrets.sh <secret name> <namespace>

Run following command to confirm that the secret has been successfully created

kubectl get secrets -n <namespace>

9. Now return to the helm chart configuration. Click Configure release as shown in 
Figure 7-54 on page 499.

Figure 7-54   Configure the helm chart

10.Provide the name for the helm release and specify target namespace. Accept the license 
as shown in Figure 7-55.
Chapter 7. Field notes on modernization for application integration 499



Figure 7-55   Helm Release name and Target namespace

11.Paste the Content Server URL that was copied in Step 3. Select the checkbox Local 
default Queue Manager. As shown in Figure 7-56 update the text field corresponding to 
the secret for integration server configuration with the secret that we had created in Step 8 
by using the generateSecrets.sh script.
500 Accelerating Modernization with Agile Integration



Figure 7-56   Content Server URL and Secrets for Integration Server

12.Enter the name for your local queue manager and integration server and click Install. See 
Figure 7-57 on page 502.
Chapter 7. Field notes on modernization for application integration 501



Figure 7-57   Define the name for Queue manager and Integration Server

13.Check the status in helm release to ensure that the chart has been deployed successfully. 
See Figure 7-58.

Figure 7-58   Helm Release status
502 Accelerating Modernization with Agile Integration



14.You can also check the status of your queue manager from the command line by using 
kubectl commands.

a. First get the name of the pod as shown in Figure 7-59.

kubectl get pods -n <namespace>

Figure 7-59   listing the deployed pods 

b. Then exec inside the container as shown in Figure 7-60.

kubectl exec -it <pod name> -n <namespace> /bin/bash

Figure 7-60   Queue manager status by logging in to the container

15.You can check the status of the integration server from the IBM App Connect dashboard 
as shown in Figure 7-61 on page 503.

Figure 7-61   IBM App Connect dashboard showing the deployed integration server

Deploying an Integration Server with MQ client connection properties
Greater flexibility was introduced in IBM Integration Bus Version 10.0 in its interactions with 
IBM MQ; IBM App Connect Version 11.0 maintains this enhanced flexibility.
Chapter 7. Field notes on modernization for application integration 503



Consider a scenario where you are migrating from IBM Integration Bus to IBM App Connect 
v11, specifically for containerized deployment. In this scenario, you might want to configure 
your IBM App Connect Version 11.0 deployment to take advantage of the flexibility benefits 
that are described earlier in this chapter.

It might be possible to simplify your system so that your message flows interact with the 
remote queue managers, which might simplify the topology that you must manage. This 
simplification requires that you redesign your message flows and your topology. And it goes 
beyond just a migration of your existing solution. However, you might want to include these 
activities as part of your migration plans.

You can build a customized IBM App Connect Docker image by combining MQ client libraries. 
The detailed instructions are available at the following OT4I GitHub repository under section 
Build an image with IBM App Connect and MQ Client:
https://github.com/ot4i/ace-docker.

You require MQ Client libraries in order to deploy the MQ transport-based integration flows. 
For the purpose of demonstrating the IBM App Connect and remote MQ client connectivity, 
we use IBM App Connect-MQServer image. It inherently enables us with all the necessary 
MQ client libraries to deploy MQtransport based integration flows. However, we connect to a 
remote MQ server that runs in another container. The instructions described below will remain 
same if you were to try this with “IBM App Connect and MQ Client” built image. 

1. Find the information of your MQ instance that you intend to connect to. Your MQ instance 
could be running locally on-premises or in the container. For demonstration, we take an 
MQ instance that runs in our Cloud Pak for Integration platform. Figure 7-62 shows the 
Platform Navigator of Cloud Pak for Integration with couple of MQ instances.

Figure 7-62   IBM Cloud Pak for Integration Platform Navigator

2. Select the MQ instance that you want to connect to from the Messaging tile as shown in 
Figure 7-63
504 Accelerating Modernization with Agile Integration

https://github.com/ot4i/ace-docker


Figure 7-63   MQ instance in platform navigator

3. It will take you to the MQ WebAdmin console as shown in Figure 7-64. To establish the 
connectivity from your IBM App Connect message flows to the queue manager that runs 
remotely on another container, you require the connection information of the target queue 
manager. Click the highlighted options as shown in Figure 7-64 to obtain the Connection 
Information of your queue manager that runs in the container. 

Figure 7-64   MQ Web console options

4. The Connection Information, that is the hostname and listener port information of your 
queue manager will be displayed as shown in Figure 7-65.
Chapter 7. Field notes on modernization for application integration 505



Figure 7-65   Connection information for Queue manager

5. Now in the IBM App Connect Toolkit, configure MQ nodes of your integration flow with 
these hostname and Listener port details. Figure 7-66 on page 506 shows the properties 
configured on the MQInput Node. If you will be using other MQ based nodes like MQGET, 
MQPUT, you can follow similar configuration on respective node properties. 

Figure 7-66   Configuring MQ Client Connection through node properties in Toolkit

6. Alternatively you can create a MQEnpoint Policy with necessary details and configure the 
MQInput node to use the policy as shown in Figure 7-67 on page 507.
506 Accelerating Modernization with Agile Integration



Figure 7-67   Configuring MQ Client connection by using MQEndpoint policy in Toolkit

7. You can create the MQ Endpoint policy in Toolkit or use the template as shown in 
Example 7-3.

Example 7-3   MQ Endpoint policy template

<?xml version="1.0" encoding="UTF-8"?>
<policies>
  <policy policyType="MQEndpoint" policyName="myMQEndpointPolicy" 
policyTemplate="MQEndpoint">
    <connection>CLIENT</connection>
    <destinationQueueManagerName>mqicp4i</destinationQueueManagerName>
    <queueManagerHostname>mq-stateful-ibm-mq</queueManagerHostname>
    <listenerPortNumber>1414</listenerPortNumber>
    <channelName>ACE.TO.MQ</channelName>
    <securityIdentity>mymqmsec</securityIdentity>
    <useSSL>false</useSSL>
    <SSLPeerName></SSLPeerName>
    <SSLCipherSpec></SSLCipherSpec>
  </policy>
</policies>

Description of the fields in policy file: 

– policyName should match with the value mentioned on the Node property in Toolkit

– Connection value should be set to CLIENT

– queueManagerHostname to be set to host or IP address of the system where the 
remote queue manager is running. 

• If the queue manager is deployed in the container in the same namespace as IBM 
App Connect integration server, you can use the Kubernetes service name of the 
MQ instance. In the preceding example, we use the Kubernetes service name as 
our MQ server instance is deployed in the container in the same namespace. 

<queueManagerHostname> mq-stateful-ibm-mq </queueManagerHostname>
Chapter 7. Field notes on modernization for application integration 507



• If the MQ server instance is deployed in another namespace you can use the fully 
qualified service name. For example 

<queueManagerHostname>mq-stateful-ibm-mq.icp4i.svc.cluster.local</queueManag
erHostname>

Here, 

Kubernetes service -> mq-stateful-ibm-mq 

namespace -> icp4i 

– listenerPortNumber is the port number which queue manager listener is listening on

– channelName is the SVRCONN channel between IBM App Connect and MQ server.

– Set the securityIdentify field if you intend to have an authentication process for MQ 
client connections.

8. Use this policy file shown in preceding example for creating Kubernetes secrets by using 
the generateSecrets.sh script. We will define this secret while deploying the helm chart. If 
you have defined any securityIdentity then update the setdbparms.txt file with necessary 
details so that they too are included in the secrets.

9. On MQ server side, using the MQ WebAdmin UI, create a SVRCONN channel with the 
same name as specified on the MQInput node property or in the MQEndpoint policy.

Figure 7-68 shows the SVRCONN channel ‘ACE.TO.MQ’ and its status.

Figure 7-68   MQ SVRCONN channel

10.Now we deploy the integration flow by using the IBM App Connect dashboard. In the helm 
chart configuration, we select Local Queue Manager option. We do not intend to use 
local queue manager. However, we do this to have the MQ client libraries available inside 
the IBM App Connect container so that we can support the deployment of MQ-based 
nodes in IBM App Connect integration server. See Figure 7-69 on page 509.
508 Accelerating Modernization with Agile Integration



Figure 7-69   Local Queue manager option in IBM App Connect helm chart

11.Update the secrets field of server configuration with the name of the secret created in 
previous step number 8. See Figure 7-70.

Figure 7-70   Secrets field for integration server in IBM App Connect helm chart

12.We clear the Enable Persistence option as we are going to use MQ in the container only 
as a client. Therefore, we do not need to persist any messages. See Figure 7-71 on 
page 510.
Chapter 7. Field notes on modernization for application integration 509



Figure 7-71   Persistence settings 

13.After the deployment is done, confirm that the integration flow has successfully connected 
to remote Queue manager and has started listening for the messages on the input queue. 
You can review the logs of your integration server in the logging service like Kibana.

14.On successfully connection to remote queue manager, you can observe the Open input 
count on the queue properties in MQ Web Console. A nonzero value indicates that a client 
application has opened the queue for reading messages. See Figure 7-72 on page 510.

Figure 7-72   Queue properties

15.Now execute the integration flow by putting a message on the input queue. 

Note: You might encounter the mqrc=2035 MQRC_NOT_AUTHORIZED error while 
connecting from IBM App Connect container to MQ server. This happens when your IBM 
App Connect container is running with a userid that is not present on MQ container or is 
not a member of mqm group. So you might want to create this IBM App Connect user on 
MQ container and assign it to mqm group. Alternatively, you could set up some 
authentication mechanism like LDAP authentication on MQ server and authorize the IBM 
App Connect user through LDAP services.
510 Accelerating Modernization with Agile Integration



7.8.3  Considerations for Http/WebServices based integration flows in 
containers

If your integration flow is designed the SOAPInput or HttpInput node, one of the key 
configurations to consider while running in containers is the URL on which the service is 
listening for client requests. The default port on which integration server listens for Http traffic 
is 7800 and for Https traffic default port is 7843. When Integration server is deployed in a 
container that runs in Kubernetes, these ports are exposed via NodePort service so that 
external clients can connect via NodePort service. You can obtain the port-mapping 
information from OpenShift Container Platform - Cluster Console → Networking → 
Services → ServicePort Mapping.

Figure 7-73 shows a sample configuration of an integration flow with HttpInput node.

Figure 7-73   HttpInput Node property with service URL

Figure 7-74 on page 511 shows the post-deployment status, where the Kubernetes Nodeport 
service exposed Http port 7800 as Nodeport 31628 and Https port 7843 as Nodeport 30064.

Figure 7-74   Http, https node port mapping 

If your client applications are connecting from outside the Kubernetes cluster, they will need 
to invoke service on URL in following format 

http://<cluster proxy IP>:<Nodeport>/serviceName. 
Chapter 7. Field notes on modernization for application integration 511



For example, the preceding URL can be written as follows:

http://xxx.xxx.xxx.xxx:31628/createRecord

Figure 7-75 shows a Webservice URL configuration for an HttpRequest node of an IBM App 
Connect flow that runs outside of container platform. The configuration invokes a deployed 
web service (another IBM App Connect integration flow with HttpInput node) on the container 
platform. 

Figure 7-75   WebService URL configuration to invoke a service on container platform

If your client applications are running within the Kubernetes cluster, you can invoke the 
service by using the URL format shown in Figure 7-76 on page 512.

Figure 7-76   Webservice URL using internal service name and port

For example:

– If the service is running in the same namespace as requesting client
http://ace-http-server-ibm-ace-server-icp-prod:7800/createRecord

– If service is running in the different namespace as requesting client, then use a fully 
qualified service name as 

http://ace-http-server-ibm-ace-server-icp-prod.icp4i.svc.cluster.local:7800/
createRecord

7.8.4  Considerations for integrations that interact with databases

If you want to access databases from your deployed message flows in containers, you can 
connect to a database through a JDBC or ODBC interface. In this section we discuss the 
configuration requirements for each of these interfaces.

Tip: You can also configure a load balancer to route the external client requests to the 
appropriate nodeports within the cluster. A similar approach is described for MQ in 
Chapter 9, “Field notes on modernization for messaging ” on page 571.
512 Accelerating Modernization with Agile Integration



Connecting to database via ODBC interface
IBM App Connect supports the databases that are listed in IBM App Connect system 
requirements. ODBC drivers for certain database providers (which are based on Wire 
Protocol) are supplied and installed with IBM App Connect. However, for some database 
providers like DB2 you must install the client libraries alongside IBM App Connect to enable 
the connection to the database server. So depending on your target database server, you 
might need to customize IBM App Connect Docker image to include database client libraries.

� If you are using the Wire Protocol ODBC driver that ships with the IBM App Connect for 
databases like Oracle, Sybase, SqlServer no further customization is required for the IBM 
App Connect Docker image to enable database connectivity. You can proceed to the 
following section on ODBC configuration steps. 

� The default IBM App Connect Docker image does not include DB2 client libraries. So if 
your integration flows need to access DB2 database, you need to create a new IBM App 
Connect Docker image by including DB2 client in it. DB2 client libraries can be obtained 
from http://www.ibm.com/support/docview.wss?uid=swg21385217. 

ODBC configuration steps 
To access a database via ODBC interface, you require odbc.ini file and database access 
credentials (userid, password) to be set via mqsisetdbparms. When you run IBM App 
Connect integration server in a container in Kubernetes, you need to configure the odbc.ini 
and security credentials via Kubernetes secrets. This is explained through following steps:

1. Create new integration server from IBM App Connect dashboard in the Cloud Pak for 
Integration.

2. Download the configuration package as shown in Figure 7-77

Figure 7-77   Configuration package for integration server

3. Extract the package on your local file system. You will see an odbc.ini file in the extracted 
files.

4. If you are migrating from previous version of IIB or moving from IBM App Connect 
on-premises to containers, you can copy your existing odbc.ini file or create a new DSN 
stanza in the odbc.ini.

5. Ensure that you retain the name of the odbcini file as odbc.ini.
Chapter 7. Field notes on modernization for application integration 513

http://www.ibm.com/support/docview.wss?uid=swg21385217


6. The installation path of IBM App Connect in a container in IBM Cloud Pak for Integration 
platform is /opt/ibm/ace-11/. Therefore, modify the odbc.ini file as shown in Example 7-4 
below to reflect the correct path of the odbc driver in IBM App Connect container. Make 
the similar change to the InstallDir path under mandatory [ODBC] stanza.

Example 7-4   odbc.ini file changes for Driver and InstallDir path

[USERDB]
Driver=/opt/ibm/ace-11/server/ODBC/drivers/lib/UKora95.so

;##########################################
;###### Mandatory information stanza ######
;##########################################

[ODBC]
InstallDir=/opt/ibm/ace-11/server/ODBC/drivers
UseCursorLib=0
IANAAppCodePage=4
UNICODE=UTF-8

7. In the Downloaded configuration package, you will find a file named setdbparms.txt. 
Associate your DSN with the user ID and password as shown in Example 7-5.

Example 7-5   Format for credentials in setdbparms.txt 

#<Resource Name> <Userid> <Password>
USERDB user1 passwd1

This is equivalent to running mqsisetdbparms command for an on-premises integration 
server.

8. Create the Kubernetes secret by using the generateSecret.sh script, which is available in 
the downloaded configuration package. The syntax and considerations for running 
generateSecret.sh is already described in previous section.

$ generateSecret.sh myodbcsecret icp4i

9. In the helm chart, specify this secret in the field for integration server secret configuration 
as shown in Figure 7-78.

Figure 7-78   Kubernetes secrets for odbc configuration

10.After the helm chart is deployed successfully verify the database operations by processing 
a message through the flow.

Connecting via JDBC interface
You might include a DatabaseRetrieve, DatabaseRoute, JavaCompute, Mapping, or Java 
user-defined node in a message flow, and interact with a database in that node. In this case, 

Note: Only a partial snippet of odbc.ini file configuration is shown in the preceding 
example. Refer to the product Knowledge Center for the complete DSN stanza for 
respective database providers.
514 Accelerating Modernization with Agile Integration



you must define a JDBC Providers policy to provide the integration server with the information 
that it needs to complete the connection. Some important considerations about naming the 
policy are documented in IBM Knowledge Center. 
https://www.ibm.com/support/knowledgecenter/en/SSTTDS_11.0.0/com.ibm.etools.mft.do
c/ah61310_.htm

To set up a JDBC provider for type 4 connections for message flows running in a container in 
Kubernetes environment, complete the following steps.

1. Use the Policy editor in the IBM App Connect Toolkit to create a JDBC Providers policy 
and choose the template for your chosen database type. The template provides some 
default values, but you must change some of them to create a viable definition.

Figure 7-79 shows an example of DB2 JDBC provider policy.

Figure 7-79   JDBC provider policy

2. Define Security identity field in the jdbc providers policy. This property specifies a unique 
key to identify a DSN entry, which provides the user ID and password credentials that are 
required to connect to the database system. 

3. Create secrets for IBM App Connect configuration by using the same security identity 
name in the setdbparms.txt file in the following format:

jdbc::<security identity name> username password

For example, 

jdbc::db2secret db2inst1 mypasswd

4. Define the Connection URL for the target database system. You can specify the 
Kubernetes service name and port number if your database instance is running in a 
container in Kubernetes. On the other hand, if your database is running on-prem you can 
follow the usual convention of target hostname/IP and port combination. 

If database is running in a container, you can use the following connection URL format:
Chapter 7. Field notes on modernization for application integration 515

https://www.ibm.com/support/knowledgecenter/en/SSTTDS_11.0.0/com.ibm.etools.mft.doc/ah61310_.htm


– If the database container is running in the same namespace as IBM App Connect 
server

jdbc:db2://<kubernetes service name>:<database port>/DatabaseName

For example, 

jdbc:db2://db2-ibm-db2oltp-db2-dev:50000/PRODUCTS

– If database container is running in different namespace to IBM App Connect server 
then specify the fully qualified service name.

jdbc:db2://< service name>.<namespace>.svc.cluster.local:<database 
port>/DatabaseName

For example,

jdbc:db2://db2-ibm-db2oltp-db2-dev.default.svc.cluser.local:50000/PRODUCTS

– If database is running outside of container platform, then use following format 

jdbc:db2://HostName_or_IP:portNumber/databaseName

5. Generate Kubernetes secrets by using the generateSecrets.sh script available in the 
downloaded configuration package:

$generateSecrets.sh myjdbcsecrets icp4i

6. Use this secret while deploying the helm chart as shown in Figure 7-80 on page 516.

Figure 7-80   jdbc secrets config in helm chart

7. After the deployment is successful, process the message through the integration flow to 
confirm the database operation.

7.8.5  Considerations for in containers

If your callable flows are both deployed to the same integration server they can communicate 
with each other as soon as you deploy them. If you are splitting processing between different 
integration servers or different containers your flows communicate by using a Switch server 
and connectivity agents. The Switch server is a special type of integration server that routes 
data. The connectivity agents contain the certificates that your flows require to communicate 
securely with the Switch server. The connectivity agents must be running in the integration 
servers where you have deployed your integration flows.

The calling flow includes a CallableFlowInvoke or CallableFlowAsyncInvoke node, which 
calls a CallableInput node in a second (callable) flow. The calling flow uses a combination of 
the application name and the endpoint name of the CallableInput node to identify which 
callable flow to call.

Often you want to set up an environment where a Switch server and connectivity agents all 
run in the container environment. In this case, you will require one container, at a minimum, to 
act as a Switch server, and two containers act as connectivity agents. 

Figure 7-81 on page 517 shows an example arrangement of a Switch server and callable 
flows. As shown in the figure, Container1 hosts a switch server, Container2 hosts a message 
flow that has a Callable Invoke node and Container3 hosts a message flow that has Callable 
516 Accelerating Modernization with Agile Integration



Input and Callable Reply nodes. The communication between the Callable Invoke flow that 
runs in Container2 and the CallableInput flow that runs in Container3 is routed via Switch 
Server that runs in Container1.

Figure 7-81   Components of in containers

The high-level steps required to set up an environment for callable flows in containers are as 
follows:

1. Generate the configuration files for Switch Server and connectivity agents
2. Deploy an Integration Server with Switch configuration file
3. Deploy two (or more) Integration Servers with Connectivity agent files

We describe each of these steps in more detail here.

Generate the configuration files for switch server and connectivity 
agents
You can create the required configuration files for switch and agent components by using the 
iibcreateswitchcfg command

iibcreateswitchcfg -hostname <IP address of the server where switch server will run>

This command creates two JSON configuration files, switch.json and agentx.json. The 
switch.json file is used to create the Switch server. The agentx.json is used to configure the 
connectivity agent for each integration server where your callable flows are deployed.

Deploy integration server in a container with switch configuration file
You start the switch server by deploying the switch.json file to an integration server in a 
container that runs in Kubernetes. 

Switch server listens on three ports 9010, 9011, 9012 over which the connectivity agents 
establish the secure communication. Therefore, when you deploy a Switch server in a 
container you need to expose these ports externally by using Kubernetes service so that 
connectivity agents can make connection over these exposed ports. At the time of writing this 
book, the standard helm chart available with Cloud Pak for Integration did not have an option 
to expose these additional ports. Therefore, we customize the helm chart to expose these 
additional ports by using the NodePort service. In future releases of Cloud Integration Pack 
this might become available as a standard configuration. In that case, the customization of 
the helm chart will no longer be required.

Switch Server
Container1

Container2 Container3
CallableInput/ReplyCallable Invoke

agentx.json agentx.json

Switch.json
Chapter 7. Field notes on modernization for application integration 517



Refer to 7.4.2, “Upgrading (extending) helm charts” on page 464 which describes a general 
procedure on how to customize a helm chart.

Following are the high-level steps for deploying an integration server with Switch server 
component. 

1. Download sample IBM App Connect Docker image from 
https://github.com/ot4i/ace-docker/. 

2. Download the source of existing helm package from the helm chart overview panel as 
shown in Figure 7-82 on page 518.

Figure 7-82   Helm chart source files

3. Create a Docker image for IBM App Connect with necessary modifications described 
below to host the switch server. 

a. Unpack the Docker package that you downloaded from OT4I in step 1. 

b. Create a folder with the name ‘agent’ under sample/initial-config directory.

c. Copy the switch.json file that you created to the agent directory by using the 
iibcreateswitchcfg command.

d. Add following lines to the Dockerfile ubi/Dockerfile.aceonly such that the switch.json 
file is packaged in the Docker image during Docker build.

RUN mkdir /home/aceuser/initial-config/agent && chown aceuser:aceuser 
/home/aceuser/initial-config/agent

COPY *.json /sample/initial-config/agent /home/aceuser/initial-config/agent

e. Build the Docker image. 
518 Accelerating Modernization with Agile Integration

https://github.com/ot4i/ace-docker/


docker build -t ace11005 --build-arg 
ACE_INSTALL=11.0.0-ACE-LINUXX64-FP0005.tar.gz --file ubi/Dockerfile.aceonly 
.

You can also refer to the instruction on https://github.com/ot4i/ace-docker to 
ensure that you get the most current syntax for building the IBM App Connect Docker 
images.

f. Log in to Docker registry and push the Docker image to your private registry of your 
Cloud Pak for Integration platform. 

docker login mycluster.icp:8500 

docker tag ace11005:latest 
mycluster.icp:8500/icp4i/ibm-ace-server-prod:11.0.0.5

docker push mycluster.icp:8500/icp4i/ibm-ace-server-prod:11.0.0.5

4. Create a helm chart by modifying values.yaml and service.yaml files to include 
additional fields for the switch ports that we want to expose.

a. As shown in Example 7-6 we add the new fields named switch* under service type 
NodePort in values.yaml file.

Example 7-6   Additional service ports in values.yaml

service:
  type: NodePort
  webuiPort: 7600
  serverlistenerPort: 7800
  serverlistenerTLSPort: 7843
  switchport1: 9010
  switchport2: 9011
  switchport3: 9012

b. Add corresponding entries in service.yaml as shown in Example 7-7.

Example 7-7   New port fields in service.yaml file

- port: {{ .Values.service.switchport1 }}
    targetPort: {{ .Values.service.switchport1 }}
    protocol: TCP
    name: switchport1
  - port: {{ .Values.service.switchport2 }}
    targetPort: {{ .Values.service.switchport2 }}
    protocol: TCP
    name: switchport2
  - port: {{ .Values.service.switchport3 }}
    targetPort: {{ .Values.service.switchport3 }}
    protocol: TCP
    name: switchport3

c. Update chart.yaml file to specify the new version number of the chart. For example:

version: 1.1.2-icp4i-07

d. Package and upload the helm chart. For this you will need to have the Cloud Pak CLI 
installed as specified in 5.1.4, “Getting access to IBM Cloud Pak for Integration for the 
exercises” on page 145.
Chapter 7. Field notes on modernization for application integration 519

https://github.com/ot4i/ace-docker


For example:

helm package ibm-ace-server-icip-prod

cloudctl catalog load-chart -a ibm-ace-server-icip-prod-1.1.2-icp4i-07.tgz

5. Now deploy the integration server to host Switch server by selecting the new helm chart 
version from the drop-down list as shown in Figure 7-83. 

Figure 7-83   Helm chart version selection

6. Select the Docker image that we created in step 3 and select the appropriate image tag as 
shown in Figure 7-84.

Figure 7-84   Docker image field

7. Upon successful deployment of helm release, you will find messages as shown in 
Example 7-8 in the integration server log (through Kibana logging service). The console 
output shows the port numbers that the Switch server is listening on.

Example 7-8   Console output for switch server

Starting switch with config folder: '/home/aceuser/ace-server/config/iibswitch/switch'
The Switch server has started listening for agent requests on the back side port '9010'.
The Switch server has started listening for agent requests on the front side port '9011'.
The Switch server has started listening for HTTPS administration requests on port '9012'.
The integration server component 'switch' has been started.
component started: "switch"

8. From the services details of the helm release find out the corresponding externally 
exposed port numbers as shown in Figure 7-85.

Note: In future releases of ICP4I, you might be able to add the agent and switch files 
dynamically via Kubernetes secrets generated by using the generateSecrets.sh script. 
In this case, you will not have to build a custom Docker image and helm chart for 
deploying Switch and Connectivity Agent components.
520 Accelerating Modernization with Agile Integration



Figure 7-85   Node port service details for switch agents

Deploy containers with connectivity agent
In order to deploy connectivity agents in container, perform following steps:

1. Update Switch server URL in agentx.json file to include external port number 
corresponding to the switch server port 9011. Figure 7-85 shows the port mapping of the 
services in OCP console and you can observe that the port 9011 maps to 30971. 

Example 7-9 shows the snippet of the agentx.json file after modification:

Example 7-9   agentx.json configuration for switch server URL

{
  "name" : "agentx",
  "switch" : {
    "url" : "wss://xxx.xxx.xxx.xxx:30971",

}
}

2. Prepare a new Docker image by following the similar procedure as described in previous 
section for building the image for Switch server. In this case, instead of switch.json file, 
place this modified agentx.json file in agent folder and build the Docker image.

Tag the Docker image as: 
mycluster.icp:8500/icp4i/ibm-ace-server-agent-prod:11.0.0.5

3. Push the Docker image to the private registry. 

4. Deploy the BAR file that has CallableInput node by using the helm chart. Make sure you 
specify the newly created Docker image in the helm chart Docker image parameter field. 
See Figure 7-86.

Figure 7-86   Docker image customized for Connectivity Agent

5. After connectivity agent makes successful connection with switch server, you will notice 
following messages in console log
Chapter 7. Field notes on modernization for application integration 521



Example 7-10   Console output for agentx component

The connection agent for remote callable flows has established a connection to the 
Switch
server with URL 'wss://xxx.xxx.xxx.xxx:30971'.
The integration server component 'agentx' has been started.
component started: "agentx"

6. Deploy another integration server with the BAR file that has CallableInvoke node by using 
the same procedure as above.

7. Now invoke your message flow that contains CallableInvoke node and verify that callable 
flow has returned the expected response.

7.8.6  Considerations for TCP/IP based integrations in containers

You use a TCP/IP node in an IBM App Connect integration flow to create a server or client 
connection to a raw TCP/IP socket, and to send or receive data over the connection to or 
from an external application. The TCPIPServerInput node listens on a port and when a client 
socket connects to the port, the server socket creates a connection for the client. For the TCP 
client applications to make connection requests on TCP Server, the TCP Server port must be 
exposed. In a Kubernetes container environment, this is done via Node port service.

You can also refer to 7.8.3, “Considerations for Http/WebServices based integration flows in 
containers” on page 511. It gives an example of how to add new fields for TCPIP port via 
Nodeport service in the IBM App Connect helm chart. 

1. You configure the TCPIPServer node properties as shown in Figure 7-87.

Figure 7-87   TCPIP Server Input Node connection details

After deploying such integration flow in a container that runs in Kubernetes environment, 
you can obtain its nodeport service details. For example:

– Kubernetes service: ace-tcpip-server-icp4i-prod
– Nodeport: 32190/TCP (externally exposed nodeport for the port 5450 in the container)

Now the TCP Client flows or external TCPIP client applications can connect to this 
TCPIPServer by using one of the following methods:

2. Use Cluster Proxy IP and NodePort if your TCPIP client is running outside of Kubernetes 
cluster. 

Note: At the time of writing this book, the standard helm chart available as part of the 
Cloud Integration Pack does not have an option to expose user-defined TCP/IP ports 
externally. Section 7.4.2, “Upgrading (extending) helm charts” on page 464 describes a 
procedure on how to extend a helm chart. In future releases of Cloud Integration Pack, this 
might become available as a configuration option such that the customization of the helm 
chart will no longer be required.
522 Accelerating Modernization with Agile Integration



<Cluster proxy IP address>:32190
Figure 7-88 shows the connection details for a TCPIP Client Input of an integration flow 
that is acting as a client application. Similar connection configuration is applicable for other 
non-IBM App Connect TCP Client applications. 

Figure 7-88   TCPIP Client Nodeport connection property

3. Use Service name and Port number if your TCPIP client is running within the Kubernetes 
cluster.

– Example 1: A container that hosts TCPIP Client Applications/integration flows is 
running in the same namespace as the container that hosts TCPServer integration 
flow. You can use following connection format:

<service name>:<port number>

Example code for Example 1: 
ace-tcpip-server-icp4i-prod:5450

Figure 7-89 shows an example of connection details on TCPIP Client Input node. 

Figure 7-89   TCPIP Client connection using service name and Port number

– Example 2: If a container that hosts TCPIP Client Applications/integration flows is 
running in a different namespace to the container that hostsTCPServer integration 
flow. You can use fully-qualified service name in the following format:

<service name>.<namespace>.svc.cluster.local:<port number>

Example code for Example 2: 
ace-tcpip-server-icp4i-prod.icp4i.svc.cluster.local:5450.

Figure 7-90   Connection details with fully-qualified service name
Chapter 7. Field notes on modernization for application integration 523



If you intend to use TCPIP Client policy to configure the connection details, you can use 
similar connection information as described above in the Hostname and Port fields of the 
policy file. 

7.8.7  Considerations for file-based integration in containers

If your IBM App Connect application (integration flows) is based on File Nodes that consume 
files from local file system directory and if you intend to move such integration flows to a 
container, you can use one of the following options: 

� Make the local file system available to the container by using Persistent Volume Claim.

� Refactor the integration flow to consume the files over remote transfer protocol.

In this section we discuss the considerations for each of these approaches to assist you in 
making appropriate choice that suit your business needs.

Using Persistent Volume Claim to access local file system
Kubernetes Persistent Volume (PV) and Persistent Volume Claim (PVC) provides a 
mechanism to share a directory from your local system to Kubernetes container. For more 
information on PVs and PVCs, refer to 3.2, “Capability perspective: Application integration” on 
page 54. In your Container Platform you can create Persistent Volumes of desired size, type 
and storage class. The IBM App Connect helm chart can be customized to provide an option 
for a Persistent Volume (for non-MQ use cases). At deployment time, the Helm release will 
then create a Persistent Volume Claim to bind an available Persistent Volume in the container 
platform to the IBM App Connect Deployment.

At the time of writing this book, the standard IBM App Connect helm charts available as part 
of the Cloud Integration Pack do not provide an option to bind to a PVC except for the use 
with Local queue manager. However, it is possible to extend the existing IBM App Connect 
helm chart to include an option to attach to a PVC. Figure 7-91 on page 525 shows a possible 
arrangement of the components for the File-based integrations in containers for a NFSv4 
compliant file system storage.
524 Accelerating Modernization with Agile Integration



Figure 7-91   Accessing external files from IBM App Connect container

Notice that we have shown the configuration as a Deployment rather than a Stateful set. 
Deployment creates a ReplicaSet that then creates one or morePods. In this configuration 
only one PVC will be created that all the pods will share. The Persistent Volume should 
support Read-Write-Many mode to allow Integration Flows that runs in multiple Pods to 
access the same folder. Such feature is typically provided by file system like NFS. Following 
are the guidelines for deploying your integration flows by using the Deployment and PVC 
option.

� Ensure that your host system has a file system that supports Read-Write-Many (for 
example NFSv4).

� Mount the shared path on each node in the cluster. Later, when you scale your flows, 
Deployment and Pods could be scheduled on any node within your cluster. Therefore, you 
must have that mount point available for the Pods to access the files. As an example, 
assume that the shared path is /data/files. 

You use this shared path in your File Nodes properties. For example, if you want to use 
FileInput node to read the files, define /data/files path as Input Directory on the 
FileInput Node properties. Ensure that files arrive on this path in our local file system.

� Create a Persistent Volume (PV) in Kubernetes cluster by using NFS and 
Read-Write-Many option

� In your customized helm chart, select the option to create a Persistent Volume Claim 
(PVC) which, at deployment time, will bind an available persistent volume to the IBM App 
Connect deployment.

Upon successful deployment of helm release, the shared path on the local file system is now 
accessible to the File Nodes (FileInput, FileOutput, FileRead) that runs in a container. 

ACE Integration Server Pod

ReplicaSet

PVC

PV – Persistent Volume
PVC – Persistent Volume Claim
RWM – Read Write Many

Deployment

mnt:/data/files

PV (RMW)

Storage Cluster

NFS V4
/data/files
/localdir
Chapter 7. Field notes on modernization for application integration 525



Refactor the integration flow to consume the files over remote transfer 
protocol

In addition to reading or writing a file on local file system, the file nodes in IBM App Connect 
can read a file or write to on a remote directory by using FTP, FTPS, or SFTP protocol. In the 
previous section we discussed how you can migrate/enable your file-based integration flows. 
Those flows were designed to read/write files from/to local filesystem to run in a container 
environment by using Persistent Volume Claim (PVC). This approach requires you to 
provision a storage class that supports Read-Write-Many mode of operation and bind a 
deployment to a Persistent Volume. If you cannot adopt this option, then you can use the 
following alternative approach: Access the files over remote transfer protocol as depicted in 
Figure 7-92 on page 526. 

Figure 7-92   File Nodes Remote Connection configuration

This approach might require you to refactor your integration flows to use Remote Transfer 
option on File Nodes and ensure that the remote transfer services are available on target 
server.

Following are the configuration steps to use File nodes in Remote Transfer mode:

� Select Remote Transfer option on FileInput Node as shown in Figure 7-93

� Select the Transfer Protocol from the options in drop-down list - FTP, SFTP, FTPS

� Enter the server and port number where files are to be written or read from.

� Provide the security identity that you created for accessing remote server. This security 
identity must be defined in setdbparms.txt while creating the Kubernetes secret key. In 
setdbparms.txt the format of the entry will be as given below. For example, for an SFTP 
mode: sftp::sftpsecret userid password

� Directory on the remote server where the file is accessed. 
526 Accelerating Modernization with Agile Integration



Figure 7-93   FileInput Node remote transfer configuration

� In the remote transfer mode, Fileinput node first moves the files from the remote server to 
the local directory and then processes it. Therefore, as shown in Figure 7-94 on page 527 
you need to provide a local input directory to hold the file while it is being processed. This 
input directory must be on the local file system where the Integration Server is running. In 
the container environment the local directory for an Integration Server will be the directory 
on a file system inside the container. 

This directory should have read/write access for the IBM App Connect user. In the 
example shown in Figure 7-94, /tmp is defined as the Input Directory. With this 
configuration, the file on the remote server will first get transferred to the /tmp directory on 
the local file system inside the container. You can also specify the file name or pattern to 
filter out the files that you want to process. 

Figure 7-94   FileInput node Basic tab properties

� After you have modified your integration flow as described above, create the BAR file, 
Kubernetes secret and proceed with the deployment via helm chart.
Chapter 7. Field notes on modernization for application integration 527



7.8.8  Considerations for integrating IBM App Connect with IBM Event Streams 

IBM Event Streams is a scalable, distributed, high-throughput message bus, which supports 
a number of client protocols including Kafka. You can use the KafkaProducer and 
KafkaConsumer nodes in IBM App Connect to receive messages from and send messages to 
IBM Event Streams.

The following steps provide detail on how to configure a connection from IBM App Connect to 
IBM Event Streams that runs within the Cloud Pak for Integration platform. Similar steps can 
be used for connecting to an external event streams instance.

Extract event stream connection information
1. To obtain the connection information of Event Stream instance in the IBM Cloud Pak for 

Integration cluster, click Connect to this cluster option as shown in Figure 7-95.

Important: In Remote Transfer mode, the file is deleted from the remote server after it is 
transferred to the local directory by the FileInput node for processing. The FileInput node 
creates an mqsitransitin subdirectory in the input directory. The mqsitransitin subdirectory 
holds and locks the input files while they are being processed. If an integration server 
crashes while processing the file, the partially processed file can be recovered from the 
mqsitransitin subdirectory of the local input directory and can be submitted for 
reprocessing. 

In the Kubernetes environment, if the IBM App Connect Integration Server Pod crashes, a 
new replacement Pod is spawned by Kubernetes from the base Docker image. The data or 
state is lost when the container/Pod dies because the file system inside the container is 
temporary. Therefore, you might lose the partially processed file because it is held in the 
local directory inside the container in the following scenario: 

You are processing a file inside container in Remote Transfer mode, and the container /Pod 
crashes for some reason. 

Therefore, when you use the Remote Transfer option for processing files, you need to 
ensure that you have a backup copy of the files on the remote server. That way, the files 
can be resubmitted for processing in the event of failure due to pod or integration server 
crash.

For file-based integration, Remote Transfer option is recommended instead of consuming 
the files via file system mounts that use persistent volume claim (PVC).
528 Accelerating Modernization with Agile Integration



Figure 7-95   Event Stream cluster connection and topics

2. Copy and download the Bootstrap server information as shown in Figure 7-96 on 
page 530. You use this information while you configure the KafkaProducer and 
KafkaCosumer nodes in IBM App Connect integration flow. In order for the Kafka clients 
— such as IBM App Connect Integration flow — to connect to Event Stream instance with 
the SASL_SSL security protocol, you must have the certificates. Download the PEM 
certificates by clicking the option as shown in Figure 7-96 on page 530.
Chapter 7. Field notes on modernization for application integration 529



Figure 7-96   Bootstrap server and Certificate information

3. Make note of the Truststore password as this will be required while you configure the IBM 
App Connect secrets.

4. Create API Key by using the options as shown in Figure 7-97 on page 531.
530 Accelerating Modernization with Agile Integration



Figure 7-97   API Key creation options

5. Click Generate API Key. 

Figure 7-98   Generate API Key

6. Copy or download the API Key.
Chapter 7. Field notes on modernization for application integration 531



Figure 7-99   API Key for Accessing Event Stream

Configuration for IBM App Connect integration flow 
Follow these steps to configure IBM App Connect integration flow:

1. In IBM App Connect Integration Toolkit, configure KafkaConsumer Node with Topic name 
and Bootstrap server as shown in Figure 7-100.

Figure 7-100   KafkaConsumer Node property configuration

2. You can configure the KafkaProducer or KafkaConsumer node to authenticate by using 
the user ID and password. You must set the Security protocol property on the node to 
SASL_SSL and SSL protocol to TLS v1.2 as shown in Figure 7-101 on page 533.
532 Accelerating Modernization with Agile Integration



Figure 7-101   Security Protocol configuration

3. Similarly, you can configure KafkaProducer node as with Bootstrap server, Topic and 
Security protocol as shown in Figure 7-102.

Figure 7-102   KafkaProducer node configuration 

Generate a secret object for connecting from IBM App Connect helm 
release to the Event Streams instance

Next we need to generate a secret object for connecting from IBM App Connect helm release 
to the Event Streams instance.

1. Navigate to the directory where Secrets configuration package is extracted.

2. Update serverconf.yaml file to specify the security credentials parameter for accessing 
TrustStore under the JVM resource. 

ResourceManagers:
  JVM:
    truststorePass: setdbparms::truststore

3. Copy the API Key from the previously downloaded es-api-key.json file to the 
setdbparms.txt file. 
Note: Copy only key, not the quotation marks around it. 
Add a row for security credentials for truststore access. You can use any dummy userid. 
Use the password obtained from the EventStream connection information.

kafka::KAFKA token A4q0H1A7iJ2J5aLfqDj-XtBMIqNBS0SgPaMtWxcjIPty
setdbparms::truststore dummy password

4. Extract the certificate from the previously downloaded the es-cert.pem file.

openssl x509 -in es-cert.pem -text
Chapter 7. Field notes on modernization for application integration 533



5. Copy the certificate, including the lines -----BEGIN CERTIFICATE----- and ----END 
CERTIFICATE----- and paste it to both files: truststore-Cert-mykey.crt and 
keystore-mykey.crt

6. Run generateSecret.sh.

./generateSecrets.sh my-kafka-secret icp4i

Deploy the BAR file
Perform the following to deploy the BAR files:

1. On the IBM App Connect dashboard, navigate to the Servers tab and click Add server.

2. Select BAR file and click Continue.

3. Copy the Content URL to the clipboard and click Configure release. 

4. Helm chart opens. Click Configure. 

5. Along with all usual configurations, ensure that you enter the secret name as defined 
previously in the step for generating secrets for accessing Event Streams. In our case, 
secret name is my-kafka-secret as shown in Figure 7-103. 

Figure 7-103   Helm chart - Kafka Secret 

6. On successful deploy of helm release, verify the connectivity with Kafka broker by 
processing the message through IBM App Connect integration flow.

7.9  Splitting an integration across on-premises and cloud

This section discusses available features in IBM App Connect that enables hybrid Integration 
between Cloud and on-premises deployments.

7.9.1  Overview

When you are building your hybrid or multicloud infrastructure, you must make an important 
architectural decision about splitting your integrations between these environments. IBM App 
Connect makes this possible with callable flows. A message flow can call another flow 
directly, both deployed on different platforms or environments, or indeed between 
on-premises and cloud.

A message flow can complete many different actions, if those actions are 
computation-intensive, you can split them from the main flow and complete them somewhere 
else. Callable flows also facilitate reuse because they can be called by multiple message 
flows. You can split your flows between different applications in the same integration server, 
or between different integrations servers, which can also be in different integration nodes. 
Callable flows must be in applications. You cannot deploy in libraries or integration projects. 

In a hybrid integration scenario, some parts of a message flow might logically belong in a 
specific location. For example, if your flow queries an on-premises database, performance is 
better if that part of the flow remains on-premises. But if part of your flow queries a website 
multiple times, performance might be improved by running that part of the flow in the cloud. 
534 Accelerating Modernization with Agile Integration



You can call the cloud-based flow from your on-premises flow, and the flow in the cloud does 
not use any of your on-premises resources. 

If you are splitting processing between different integration servers, your flows communicate 
by using a Switch server technology and connectivity agents. As shown in Figure 7-104, the 
Switch server communicates to the appropriate connectivity agents. The Switch server is a 
special type of integration server that routes data. You cannot deploy anything to the Switch 
server.

The connectivity agents contain the certificates that your flows require to communicate 
securely with the Switch server. The connectivity agents for connecting to a Switch server, 
must be running in the integration servers where you have deployed your on-premises 
message flows.

Figure 7-104   Callable message flows

Notice that if both of your callable flows are both deployed on IBM Cloud, they can 
communicate with each other as soon as you deploy them as the Switch server is 
automatically started for you. You do not need to set up communication between them. 
Similarly, you also do not need to set up communication if both flows are deployed to the 
same IBM App Connect integration server.

You can split processing synchronously between message flows by using the 
CallableFlowInvoke node in the calling flow, and CallableInput and CallableReply nodes in 
the callable flow. Alternatively, you can split processing asynchronously between message 
flows, by using the CallableFlowAsyncInvoke node in the calling flow, CallableInput and 
CallableReply nodes in the callable flow, and the CallableFlowAsyncResponse node in the 
response flow. You can also choose to share data between the flows that contain these 
asynchronous nodes (the calling flow and the response flow) by storing and retrieving data in 
the UserContext folder in the environment tree.

7.9.2  Using callable flows with IBM App Connect Designer 

Flows created on the cloud in IBM App Connect Designer have the ability to call flows on App 
Connect integration servers in other environments. Here are some examples of the powerful 
integrations that are now possible:
Chapter 7. Field notes on modernization for application integration 535



� Integrate events from cloud-based applications like Salesforce, Workday, and Marketo 
with on-premises packaged applications like SAP. This allows the SAP system part of the 
integration to be run on-premises to remove the need to expose the SAP system directly 
to the internet. All communications with SAP are controlled by the callable flow that runs 
on-premises. Also, by not directly integrating the cloud integration to the SAP system, it 
reduces the number of network interactions that are required to one call from the cloud to 
the running callable flow.

� Integrate IBM App Connect Designer flows into on-premises transports like IBM MQ, file 
systems (including managed file transfer), and databases without having to allow direct 
access from the cloud to these transports. Each transport can be accessed by 
constructing a flow for an IBM App Connect integration server, and making it available as 
a callable flow.

� Allow the exchange of data from cloud-based formats that are based in JSON or XML to 
proprietary message formats like EDIFact, COBOL structures, or CSV. You can use 
callable flows to convert between these formats using the rich-message-parsing 
technology that is available in IBM App Connect Enterprise.

Figure 7-105 outlines how the use of callable flows authored in both IBM App Connect Toolkit 
and Designer can enrich your Hybrid Integration implementations. 

Figure 7-105   Callable flows between IBM App Connect Toolkit and Designer authored flows

If you need to call a callable flow in IBM App Connect Toolkit from Designer flow you can do 
that by using an application name that is identical to the IBM App Connect on IBM Cloud flow 
name, with the endpoint name set to default.

There’s no need to copy any definitions from App Connect Toolkit to Designer or vice versa. 
After the IBM App Connect on IBM Cloud flow is started, it can be discovered and then 
executed by any flow that’s configured with the correct application name and endpoint name.

As shown in Figure 7-105 on page 536, you can call Toolkit flows from other Toolkit flows. As 
discussed in the previous section, this is achieved by using the Switch server technology. The 
Switch server can be deployed either in IBM App Connect managed runtime (iPaaS) or 
deployed on your own cloud.
536 Accelerating Modernization with Agile Integration



Access to Cloud Connectors
The expanded capability of the callable flows allows on premises IBM App Connect flows to 
make use of the growing selection of connectors to software as a service (SaaS) applications. 
This enables seamless hybrid integration where it is easy to construct integrations that 
combine function in the cloud and on-premises.

For example, this enables enterprise IT practitioners to augment data in SaaS applications 
that are used by line of business (LoB) users and developers. And they can retrieve data from 
SaaS applications for use in enterprise IT activities.

Figure 7-106 shows a simple IBM App Connect flow that uses cloud-based connectors for 
applications like Marketo and Eventbrite, and uses callable flows, which can utilize IBM App 
Connect integration servers on-premises.

Figure 7-106   Simple IBM App Connect flow 

The following link provides an example where a flow in IBM App Connect Enterprise (ACE) 
updates on-premises enterprise data:
https://developer.ibm.com/integration/docs/app-connect-enterprise/tutorials/sharin
g-data-processing-premises-activities-cloud-saas-applications-using-callable-cloud
-flow/

The example then calls an event-driven flow in IBM App Connect on IBM Cloud to pass 
enterprise data to SaaS applications and to get data from SaaS applications for processing 
on-premises.

7.9.3  Callable flows versus APIs

IBM App Connect has very good REST support so REST can allow splitting processing 
between two flows. What is more, IBM App Connect integration server has a REST node 
specifically for calling cloud-based integrations. 

However, in many cases callable flows are a better choice:

� Do not require opening any on-premises TCP/IP ports

� Flows can be moved seamlessly between on-premises and cloud servers without the 
calling flows being changed.

� Requires less skill to understand how to call and implement a callable flow.

� Removes the need to integrate the IBM App Connect integration servers.

� Allows for future enhancements of your message flows that could not be simply added on 
top of REST.

7.9.4  Cloud debugger for ACE on Cloud applications

Message flows are routinely deployed in IBM App Connect integration servers on IBM Cloud. 
When you work with these message flows, you might need to troubleshoot or investigate data 
as it travels through those flows.
Chapter 7. Field notes on modernization for application integration 537

https://developer.ibm.com/integration/docs/app-connect-enterprise/tutorials/sharing-data-processing-premises-activities-cloud-saas-applications-using-callable-cloud-flow/
https://developer.ibm.com/integration/docs/app-connect-enterprise/tutorials/sharing-data-processing-premises-activities-cloud-saas-applications-using-callable-cloud-flow/


Now, you can use Cloud Debugger to remotely debug your message flows. This new feature 
utilizes the Switch technology and the connectivity agents, which enables visual debugging 
through an on-prem installation of IBM App Connect integration server.

Figure 7-107 shows the different agents available to connect to the Switch server, with 
highlighted Agent C, which enables the visual debugging on-premises. 

Figure 7-107   Different agents available to connect to the Switch server

The Switch Server ensures secure communication between the Cloud deployment and 
on-premises IBM App Connect Toolkit. This hybrid approach brings all the benefits of the 
Toolkit debugger, so you can easily set break points and view the data as the messages step 
through the message flow.

See the following blog post (and linked articles) for practical guidance on setting up your 
hybrid environment and debugging message flow that runs on IBM App Connect on Cloud:
(https://developer.ibm.com/integration/blog/2019/04/30/remotely-debug-your-enterpr
ise-integrations-in-ibm-app-connect/
538 Accelerating Modernization with Agile Integration

https://developer.ibm.com/integration/blog/2019/04/30/remotely-debug-your-enterprise-integrations-in-ibm-app-connect/
https://developer.ibm.com/integration/blog/2019/04/30/remotely-debug-your-enterprise-integrations-in-ibm-app-connect/


Chapter 8. Field notes on modernization for 
API lifecycle

In this chapter, we explore some best practices for customers planning to introduce API 
management into their integration landscape. The target audience for this chapter is those 
currently acquiring skills in IBM API Connect who want to understand some of the broader 
architectural concerns. We explore at a product level what topics around hybrid cloud 
boundaries, gateway location, automated provisioning, high availability, and testing. 

This chapter has the following sections: 

� Move from DataPower only to API Connect
� Enterprise APIs across a hybrid or multicloud boundary
� How many API Connect Clouds and Gateways
� Organization, Catalog and Space responsibilities for APIs
� Automated provisioning of a new API provider team
� High availability and scaling on containers for API Management
� IBM API Connect API Test Pyramid

8

© Copyright IBM Corp. 2020. All rights reserved. 539



8.1  Move from DataPower only to API Connect

In this section, we look at the situation where an enterprise might be using an IBM DataPower 
Gateway alone in order to expose APIs. Then, we compare that to the benefits they would 
gain by moving to IBM API Connect (APIC) to provide a complete API management solution. 
We begin by looking at the capabilities of IBM DataPower Gateway in isolation. 

IBM DataPower Gateway helps provide security, control, integration, and optimized access to 
a full range of mobile, web, application programming interface (API), service-oriented 
architecture (SOA), B2B and cloud workloads. 

IBM DataPower Gateway is available in physical, virtual, cloud, Linux, and Docker form 
factors.

DataPower is extensively used in the industry and its usage can be broadly categorized into 
the following patterns:

� Security Gateway, as shown in the figure, placed between the firewalls

� API gateway, both as internal and external gateway

� Providing connectivity and mediation services in the internal network, close to the system 
of record 

Figure 8-1 shows DataPower usage patterns.

Figure 8-1   DataPower usage patterns

Let’s discuss the patterns in detail.

Consumers

Firewall Firewall

System of RecordSecurity Gateway
540 Accelerating Modernization with Agile Integration



8.1.1  Security Gateway

DataPower is purpose-built, DMZ-ready and is used for both policy enforcement and 
consistent security policies across business channels. As a result, you reduce operating costs 
and improve security. DataPower can,

� Protect against unwanted access, denial of service attacks, and other unwanted intrusion 
attempts from the network

� Verify identity of network users (Identification and Authentication) 

� Protect data and other system resources from unauthorized access (Authorization)

� Protect data in the network by using cryptographic security protocols:

– Data endpoint Authentication

– Data origin Authentication

– Message integrity

– Data confidentiality

� Provide proxying and enforcement:

– Terminate incoming connection

– Terminate transport-level security (SSL/TLS offload)

– Threat protection

– Enforce service level agreement policies

– Inspect message content and filter (schema validate) 

DataPower also supports important security standards like OpenID Connect, OAuth, 
WS-Security, JWT. Because it is based on configuration-driven policy creation, it provides an 
extensible platform to provide first grade security to enterprise applications with minimum 
development effort.

For example, in Figure 8-1 on page 540 the DataPower in the DMZ provides a consistent and 
advanced security gateway for the downstream applications. Without DataPower, these 
applications would have to develop their own enterprise grade security in order to expose or 
use external services. The overhead of building and maintaining such security modules is 
avoided by using DataPower.

8.1.2  API gateway

DataPower is also often used for exposing internal APIs to consumers. It acts as a facade for 
the internal APIs as it has features like:

� Web services infrastructure needed to support highly secure data routing with daily high 
volume and sensitive nature of information.

� Centralized service governance and policy enforcement.

� Service level monitoring (SLM) to protect your services and applications from 
over-utilization.

� Application optimization, which uses dynamic runtime conditions to distribute based on 
topology and workload.
Chapter 8. Field notes on modernization for API lifecycle 541



8.1.3  Connectivity and mediation

DataPower is specialized to its task as a low latency gateway, and as such, it focuses on 
optimizing a very specific set of protocols, transports, and data formats. It excels at HTTP 
based traffic, with a particular focus on XML and JSON data formats, and then further 
specializes on the routing, security, and traffic management aspects expected from a 
gateway. It should not be seen as a general-purpose mediation and connectivity capability. It 
does have broader capabilities including database, mainframe, IBM MQ, JMS, FTP and more, 
but such integrations can quickly become much more complex and ill-suited architecturally 
and technically to a gateway component. As such they will be better suited to other integration 
components. 

IBM App Connect is the premier integration solution for providing complex mediation. It 
enables development of integrations by using a configuration, not coding approach, with 
premade integration templates, and rich connectors to speed development time. 

8.1.4  DataPower and API Connect compared 

DataPower includes features that allow it to work as an API gateway and compliments API 
Connect, which is custom-built to solve the challenges of enterprise API management. API 
Connect adds the following additional features to the DataPower gateway services: 

� API lifecycle management (for example active, retire, stage).

� API governance (for example best practices, security, access, versioning).

� Analytics, dashboards, third party data offload for usage analysis.

� API socialization based in a portal that allows self-service for developer community.

� API developer toolkit, which provides tools API developers need for modelling, developing, 
and testing APIs and LoopBack applications, and then publishing them to API Connect.

8.1.5  DataPower to API Connect migration 

In the API gateway pattern, organizations use DataPower as a facade for internal services 
built on top of system of record. Figure 8-2 shows such a scenario where consumers use 
DataPower as an API gateway to expose services available on system of records. 
542 Accelerating Modernization with Agile Integration



Figure 8-2   DataPower as API gateway

� It is difficult to onboard new API subscriber without lots of hand holdings. The current API 
details like endpoints, request/response message format, error conditions, test messages, 
SLAs are not easily available.

� It is difficult to tell which subscribers are really using the API and how often, without 
building a custom solution.

� It is not possible to differentiate between business-critical subscribers versus low value 
subscribers.

� It is difficult to manage changes in the API.

� There is no dynamic scaling that is built into the solution, which often means making 
hardware investment for max load or worst availability scenario.

� Service registry is often not in sync with latest service as the process is manual.

� APIs might not be following consistent security rules.

� It is not easy to move from WSDL to REST-based services.

A modernized solution can be built that uses API Connect and microservices as shown in 
Figure 8-3 on page 544.

Consumers System of RecordDataPower
Chapter 8. Field notes on modernization for API lifecycle 543



Figure 8-3   Using API Connect as API gateway

� API Connect provides a Developer Portal, which enables smooth onboarding of new API 
subscriber. The portal provides all the relevant information that is required for using the 
API.

� API Connect Analytics can be used to analyze event data through visual charts. It also 
allows the offloading of data to third-party systems like HTTP, Elasticsearch, Apache 
Kafka, Syslog. They can be used to derive API usage data.

� API Connect allows the packaging of APIs as product and plans. These can be used to 
provide differentiated services to consumers.

� API Connect provides API lifecycle management (for example Draft, Staged, Published, 
Deprecated, Retired, Archived) out of the box.

� API Connect can be deployed on cloud to leverage the elasticity, flexibility, and scalability 
of cloud.

� API Connect supports both WSDL and REST, supports industry standard Swagger 
specifications and supports modern security frameworks like OAuth, OIDC, JWT.

The preceding scenario describes the advantages of using API Connect over DataPower. The 
real value can be derived by building API platform with API Connect where different business 
value streams can host their APIs on this platform via self-service. This can be achieved 
through:

� Rules-based API governance (discovery, naming standards, security patterns, versioning, 
approvals).

� Automated CI/CD that uses tools like Jenkins and UrbanCode.

� Automated testing.

� Modern deployment practices like blue/green, A/B, canary deployments.

Conclusion
In this section, we examined various DataPower usage patterns. Also we discussed 
scenarios where the primary use case is API exposure. In such cases, API Connect provides 
a complete API management solution alongside DataPower, as opposed to using DataPower 
in isolation.

Consumers System of RecordAPIC Microservices
544 Accelerating Modernization with Agile Integration



8.2  Enterprise APIs across a hybrid or multicloud boundary

In this section, we explore the transition from a solely on-premises API management topology 
to a topology that includes both on-premises and one or more cloud-based deployment 
destinations. 

Before we do that though, we need to carefully define a couple of terms that we will use 
throughout the section. 

� API Connect topology (in place of API Cloud) 

IBM API Connect documentation defines the concept of an API Cloud, which essentially 
refers to a single installation of the components of IBM API Connect. It is made up of one 
management service, which is associated with one or more gateway services and zero or 
more portal services and analytics services. However, in this section we will use the term 
“cloud” when referring to a cloud destination such as IBM Cloud, or a third-party cloud such 
as AWS. As such, we will instead use the term API Connect topology in place of API Cloud to 
avoid any confusion around the term “cloud”. 

� Availability zone

An availability zone is a group of logical or physical data centers that are connected via a low 
latency connection. To achieve that low latency, the whole zone must be within a relatively 
small geographical boundary. In order to ensure availability even during the occurrence of 
extreme events, the API Connect topology might need to be spread across availability zones. 

Availability zones are a known construct within API Connect and you can add as many 
availability zones into your API Connect topology as needed depending on business 
requirements. 

Availability zones can contain one or more Gateway services, Analytics service, and Portal 
service. But there is only one Management service, which administers the availability zones 
that are used by an API Connect topology. 

When configuring your availability zones and services, the recommended practice is that the 
gateway, analytics, and portal services do not communicate across availability zones. Also, a 
single component service must not span multiple clouds or Kubernetes clusters. So for 
example, any given gateway service must live within a Kubernetes cluster, which is itself 
within one cloud environment (for example AWS, IBM Cloud, Google Cloud Platform). Only 
the Management service can communicate across availability zones, providing flexibility in 
deployment scenarios. See Figure 8-4 on page 546.
Chapter 8. Field notes on modernization for API lifecycle 545



Figure 8-4   IBM API Connect spread across availability zones

Hybrid and multicloud deployment options
There are many permutations of how API Connect topologies can be spread across 
on-premises and cloud destinations. We discuss two of the most common. Many of the other 
permutations can be derived by using combinations these options. 

� Option 1: One API Connect topology, with federated cloud deployment destinations

� Option 2: Multiple API Connect topologies, across multiple cloud destinations

Option 1: One API Connect topology, with federated deployment destinations
API Connect components (Gateway, Analytics, Portal) can be deployed across several clouds 
for regional flexibility. Or the components can be near systems of records to reduce latency, 
while still being governed by a centralized Management component. 

This pattern, as shown in Figure 8-5, has the following characteristics: 

� Different target applications are present across the multiple clouds and environments.

� API Gateway services are colocated with target back-end applications to reduce latency.

� Web and mobile applications consume the applications via their geographically disperse 
API gateways. 

� Developer Portals can be separated, or centralized depending on API characteristics 
exposed from different clouds (for example different Developer Portals for internal and 
external APIs)

� For API Analytics, there are two options: 

– Colocate analytics in same AZ or Cloud for security and networking latency reasons.

– Centralize to a single API analytics service.
546 Accelerating Modernization with Agile Integration



See Figure 8-5.

Figure 8-5   Hybrid cloud topology pattern

Option 2: Multiple API Connect topologies, across multiple cloud destinations
You might not want to retain a centralized management across multiple cloud locations as we 
have done in the first two options. Instead, you could have a separate API Connect topology 
in each location. This makes sense when the different cloud regions have different ownership 
within the organization. Perhaps they are different domains of the business, and do not want 
any dependencies on other domains. See Figure 8-6 on page 548.
Chapter 8. Field notes on modernization for API lifecycle 547



Figure 8-6   Build new API Connect Cloud 

8.3  How many API Connect Clouds and Gateways

Determining when to create new API Connect Clouds and Gateway clusters is a separate 
consideration to determining when to scale or when to consider multi cloud deployments. 
Organizations should consider a number of factors from impact of cloud upgrades, logging, 
availability through to the level of coupling between teams. 

8.3.1  Separate API Clouds

There are various requirements that might lead to the creation of a new team on a separately 
provisioned cloud. Cloud-level separation allows for:

� Decoupling of platform upgrade requirements across API Provider teams.

� Separation of Cloud management concerns, which might include funding, management 
team skills and management team capacity.

� Separation of logging and analytics between teams.

� Varying security requirements of API Provider teams, which might mean overly restrictive 
procedures and protocols.

� Supporting varying or conflicting non-functional requirements.

8.3.2  Separate API Gateway Cluster

There are various requirements that might lead to the creation of a new channel for API traffic. 
Each new DataPower Service in the Cloud Manager relates to a new gateway domain. That 
means you have isolation of traffic to the cluster of gateways that this configuration is pushed 
to. Gateway separation allows for:

API Connect on any Cloud
Cloud APIs

Customer Managed 
API Connect On-premises

Internal APIs

Customer Managed 
API Connect On-premises

External APIs (Open APIs or Protected Partner APIs)

API Gateway

Target 
Internal APIs

API Gateway

Target Enterprise 
Services / SoR

API Gateway

Target Cloud 
Services / Target 
Internal APIs

<<Private Internal Zone >>

<<Secure Zone >> <<Public Zone >>

API Developers
(Employees)

API Developers
(Third Party Communities)

API Developers
(Employees)
548 Accelerating Modernization with Agile Integration



� Isolation of traffic with differing availability, throughput, and security requirements.

� Decoupling of teams who require global policies to be applied. 

� Decoupling of gateway upgrade requirements across API Provider teams.

� Separation of exposure between internal and external zones, including endpoints and 
ports.

� For non-functional requirements around application affinity such as connecting to zones 
with lower latency.

8.4  Organization, Catalog and Space responsibilities for APIs

API Provider teams will be distributed within API Connect on one of three levels: 
Organization, Catalog, or Space. An Organization contains Catalogs, which can be optionally 
split into Spaces. There are certain considerations that will help system architects make these 
decisions.

The article at the following URL discusses what actions can be performed at each layer and 
the benefits this brings to organizing teams, including the roles and responsibilities that might 
be assigned:
https://developer.ibm.com/apiconnect/2019/07/18/organizingteamsinapic/ 

Table 8-1 shows the decision matrix. 

Table 8-1   Decision matrix

Each of the four factors affects the decision on how to split teams in API Connect. This is 
because the results can affect the outward appearance of the brand to API consumers, the 
risk that is exposed in production environments, and the ability of teams to interoperate in a 
decoupled way.

� One Portal: Organizations wanting to expose and manage all their APIs from a single 
location want a single portal, which has a one-to-one mapping with a Catalog. 

A single portal means a simpler route to live as only one site needs updating. It means 
greater architectural simplicity when thinking of API exposure. It also means that login 
processes and portal user management are in a single location. API applications will all 
show in a single location for the API consumer, improving consistency of look and feel for 
all users.

Portal separation is preferred in some scenarios, for example internal APIs and external 
APIs. You can handle visibility and subscribability in a single Catalog by using 
communities. And multiple portals can be customized to give the impression of being a 
single portal.

One portal 
for all API 
Exposure?

Centrally 
managed/support
ed Infrastructure?

Isolated and 
independent 
development 
teams?

Isolation of billing, 
security, roles, 
and registration?

Recommendation

y y n n Catalog

y y y n Spaces

n n y/n y Organization

n y n n Catalog

n y y n Spaces
Chapter 8. Field notes on modernization for API lifecycle 549

https://developer.ibm.com/apiconnect/2019/07/18/organizingteamsinapic/


� Centrally managed and supported Infrastructure: Where a single team owns the API 
Connect Cloud (including gateway definitions, gateway mapping and TLS profiling), all 
options are available for splitting of teams. However, when there is no centralized team 
exists, API Provider teams need to manage their APIs. This means that each team should 
have their own organization if teams are intended to be isolated and decoupled.

It is worth noting that teams that exist in their own organization will have their own portals. 
Yet, they might still be tightly coupled to other teams on the same cloud for upgrades, 
certificate management, and gateway provisioning.

� Isolated and independent development teams: Teams can manage their API lifecycle 
without interaction and in some cases awareness of other teams. By setting permissions 
and roles at any of the levels managing the API lifecycle without interaction can be 
achieved, but this ties in with other considerations like one portal. 

Even when teams are isolated, there might still need coordination from a central team to 
keep consistent API naming conventions, exposure requirements, for example only to 
select organization types, and deployment timelines.

� Isolation of billing, security, roles, and registration: Certain aspects that are defined at 
the organization layer would need to be considered and might include how API Provider 
teams log in to API Connect, how billing is configured, and whether TLS Profiles are 
available to other teams in a tightly restricted API management environment.

These four factors along with the roles, responsibilities, and actions that are detailed for 
each API Connect level need to be considered in unison for a clear and scalable approach 
when splitting teams. The use of the matrix looks to set recommendations at a high level, 
but each organization has different needs and as such one size will not fit all. 

8.5  Automated provisioning of a new API provider team

As new API Provider teams join the API Connect Cloud, you need the ability to quickly 
provision new deployment targets. Typical targets include a new Organization with a Catalog, 
a new Catalog in an existing Organization, or a new Space in an existing Catalog.

New teams have a variety of requirements. They need administrators and owners that are 
assigned, the fully qualified deployment target must be passed to API deployment teams, new 
TLS profiles might need to be added for both upstream and downstream authentication, new 
gateway clusters must be created, new communities and elementary tests must be completed 
to confirm that the setup was successful.

Manual process
Initially a manual process might be used to quickly onboard teams that want to use API 
Connect. This manual process is likely to be communication heavy and requires both 
infrastructure and API deployment teams for task completion and verification.

Typical tasks from an API Connect perspective that might need completing will be as follows 
(Table 8-2). 

Table 8-2   Manual prices - Typical tasks

Step Task Team Automatable

1 All configurations defined and confirmed by 
all relevant parties

Infrastructure team,
Architects,
API Provider Team

No
550 Accelerating Modernization with Agile Integration



This process might take anywhere from a couple of hours to several days depending on the 
teams that are involved and whether all the requirements have been met.

Automated process
As sophistication within an API Connect team grows, there will be an ability to automate the 
process of provisioning new teams. This might use existing APIs exposed within the product, 
or will use deployment tools such as Kubernetes automation processes.

https://openwhisk.ng.bluemix.net/api/v1/web/API%20Connect%20Native_apic-on-prem/de
fault/index.http

In order to call REST APIs on the API Connect Cloud a client application must be registered, 
a scope defined, and a bearer token obtained. From here, as much of the pipeline can be 
automated as possible. The new process with automation is described in Table 8-3.

2 Setup new Gateway Cluster (If applicable) Infrastructure Team Yes with user 
interaction

2a. Build and configure the IBM DataPower 
appliance

Infrastructure Team Yes

2b Create a TLS profile and configure the 
gateway cluster in the cloud manager 
adding the relevant servers

Infrastructure Team Yes

3 Create the new provider deployment target 
(Organization/Catalog/Space as 
applicable)

Infrastructure Team Yes

4 Assign defined administrator/owner of the 
new deployment target

Infrastructure Team Yes

5 Configure the deployment target to be 
associated with the relevant gateway 
cluster

Infrastructure Team Yes

6 Deploy a simple API with dynamically 
determined endpoints and complete tests

API Provider Team Yes

7 Add other users to the deployment target - 
API Developer, Lifecycle Authorities, 
Analytics Viewers

Infrastructure Team Yes

8 Add predefined artifacts to the deployment 
target for example downstream TLS 
Profiles, policies

Infrastructure Team No

9 Send deployment target details to relevant 
teams for deployment pipeline

Infrastructure Team
API Provider Team

Yes

10 Set up Developer Portal (If applicable) Infrastructure Team Yes

10a Enable and configure Developer Portal with 
validation

Infrastructure Team Yes

10b Set up admin user and add relevant 
members to the portal

Infrastructure Team Yes

Step Task Team Automatable
Chapter 8. Field notes on modernization for API lifecycle 551

https://openwhisk.ng.bluemix.net/api/v1/web/API%20Connect%20Native_apic-on-prem/default/index.http


Table 8-3   Automated process 

Step Task Automation

1 All configurations defined and 
confirmed by all relevant parties

N/A

2 Create the new Provider 
deployment target 
(Organization/Catalog/Space 
as applicable)

Later automation of the gateway service requires an organization to be 
created. If the deployment target is a new Organization this step must be 
completed first;
POST /cloud/orgs
POST /orgs/{org}/catalog
POST /catalogs/{org}/{catalog}/spaces

3 Set up new Gateway Cluster (If 
applicable)

3a. Build and configure the IBM 
DataPower appliance

The creation of Gateway services is a little subtle at the momenta. We 
anticipate making improvements in this area if automation of this type 
becomes commonplace.

3b Create a TLS Profile and 
configure the gateway cluster in 
the cloud manager adding the 
relevant servers

Create TLS profile:
POST /orgs/{org}/tls-client-profiles
Add Gateway Service to the cloud manager:
POST/orgs/{org}/availability-zones/{availability-zone}/gateway-ser
vices

4 Assign defined 
administrator/owner of the new 
deployment target

Depending on the deployment target, assign owners:
POST /orgs/{org}/transfer-owner
POST /catalogs/{org}/{catalog}/transfer-owner
POST /spaces/{org}/{catalog}/{space}/transfer-owner
Depending on the deployment target - Assign an administrator:
POST /orgs/{org}/members
POST /catalogs/{org}/{catalog}/member-invitations
POST /catalogs/{org}/{catalog}/members
POST /spaces/{org}/{catalog}/{space}/member-invitations
POST /spaces/{org}/{catalog}/{space}/members

5 Configure the deployment 
target to be associated with the 
relevant gateway cluster

For all three deployment targets the catalog should be associated:
POST /catalogs/{org}/{catalog}/configured-gateway-services
For spaces:
POST /spaces/{org}/{catalog}/{space}/configured-gateway-services

6 Deploy a simple API with 
dynamically determined 
endpoints and complete tests

Deploy API:
POST /orgs/{org}/drafts/draft-apis
Complete API Test. Delete the API after test complete:
DELETE /orgs/{org}/drafts/draft-apis//orgs/{org}/drafts/draft-apis

7 Add other users to the 
deployment target - API 
Developer, Lifecycle 
Authorities, Analytics Viewers

POST /orgs/{org}/member-invitations/{member-invitation}/register
POST /orgs/{org}/member-invitations/{member-invitation}/accept

8 Add predefined artifacts to the 
deployment target, that is, 
downstream TLS Profiles, 
policies

Deploy relevant objects for example:
POST /catalogs/{org}/{catalog}/configured-tls-client-profiles
POST 
/catalogs/{org}/{catalog}/configured-gateway-services/{configured-
gateway-service}/global-policies

9 Send deployment target details 
to relevant teams for 
deployment pipeline

Automatically send API Deployment target based on the deployment target 
type, and the names given for each, as in these examples:
POST /catalogs/{org}/{catalog}/stage
POST /catalogs/{org}/{catalog}/publish
552 Accelerating Modernization with Agile Integration



The guideline provided for automation shows that REST APIs are available on the API 
Connect Cloud in order to sufficiently automate the provisioning of API Provider teams. 
Individual use cases might vary and the assembly of the different REST APIs into a process 
need customization into some form of pipeline.

Rollback
In the event of a rollback, there are two options available. The first option is to use backup 
configurations of the system to bring the system back to before the changes were made. 
However, this risks losing API, product, and membership data, which would be a 
heavy-handed approach.

The second option is a fix forward strategy. This can be achieved by using the available REST 
APIs to GET all the relevant resources that might be touched by the automation or manual 
process. Given an event that requires a rollback, the system can be restored to its previous 
configuration (active Organizations and Catalogs). You can use either a manual process or 
further automation that resolves the configuration to a pre-change state.

We can now provision new API Provider teams using both manual and automated steps in 
API Connect.

8.6  High availability and scaling on containers for API 
Management

As discussed in the introductory chapters, agile practices in integration are giving rise to new 
patterns of deployment. We need the API management infrastructure to be able to fully use 
the cloud-native infrastructure, both from a high availability point of view and also to enable 
scaling. In this section, we explore how deployment on containers enables API Connect to 
provide a more nuanced availability and scalability model. This uses the underlying 
standards-based Kubernetes platform to look after the infrastructure orchestration, simplifying 
installation and maintenance of the overall topology.

8.6.1  High availability in a containerized environment

API Connect leverages Kubernetes as a container orchestration platform and also the 
Quorum concept (described in “Quorum” on page 555) to provide a sophisticated high 

10 Set up Developer Portal (If 
applicable)

10a Enable and configure 
Developer Portal with validation

PUT /catalogs/{org}/{catalog}/settings

10b Set up admin user and add 
relevant members to the portal

New Consumer Organizations can be set up to host API Provider users in 
the new Portal:
Create an Org:
POST /consumer-api/orgs
Invite new users:
POST consumer-api/orgs/{org}/member-invitations
POST consumer-api/orgs/{org}/members

a. Gateway Services need to be deployed independently using the subsystem definitions for the gateway leveraging 
the apicup installer, requiring specific editing of namespace and image registry. This can then be deployed ready 
for automated addition to the API Connect Cloud as above

Step Task Automation
Chapter 8. Field notes on modernization for API lifecycle 553



availability model. This can withstand many common failure scenarios and still provide the 
best possible service under the circumstances. 

Notice that this section discusses only the availability of API Connect running on a 
Kubernetes platform. Clearly there is also a need to ensure that the core components of the 
Kubernetes platform itself are configured to a suitable degree of availability (for example the 
Master, Management and Proxy). This is already explained in detail in Kubernetes 
documentation (https://kubernetes.io/docs/home/). Kubernetes platform is highly 
available. The point here is to ensure that it provides a level of availability that you need. That 
availability must be aligned with the availability you need for the components such as API 
Connect that you intend to run on Kubernetes. 

Before we discuss high availability any further, let’s highlight two important topics:

APIC components
First let’s refresh our knowledge of the different components within API Connect. As we will 
see later, they each behave differently in the various availability scenarios. API Connect 
consists of four components as shown in Figure 8-7 on page 554.

Figure 8-7   Components of API Connect

� Management System is responsible for creation, publication, and management of APIs. It is 
also used for managing the API Connect cloud infrastructure. 

� Developer Portal Services is where consumers can explore and subscribe APIs, create 
applications, and generate credentials.

� Analytics Services is used for monitoring API usage and responses across the gateway 
service. 
554 Accelerating Modernization with Agile Integration

https://kubernetes.io/docs/home/


� Gateway Services is used for enforcing API traffic, rate limits, throttling, and security.

Gateway services, Developer Portal services, and Analytics services are scoped to single 
availability zone unlike Management system, which can communicate across availability 
zones in an API cloud topology.

Figure 8-8 on page 555 shows the context in which the different components are used.

Figure 8-8   API Connect components - a runtime view

Quorum
Next let’s discuss the Quorum concept. This is a well-established model for ensuring that we 
can cater for the loss of a node within a cluster without losing the integrity of the cluster 
altogether. Without a methodology like Quorum, distributed applications like APIC can suffer 
split brain. Split brain describes the scenario when the communication breaks down between 
subsets of nodes in a cluster. As a result, it becomes impossible for each of the subsets to 
know whether the other subsets are still running. As such there is a danger that multiple 
subsets might believe they are the master of key elements of cluster-related state. Were more 
than one subset to change that state, this typically would result in inconsistencies that would 
be impossibly hard to reconcile. Quorum defines the number of operational nodes in a cluster 
that are required to perform cluster level operations, thus ensuring there is only ever one 
master of the state.

API Connect when deployed in containerized runtime uses Quorum to provide high 
availability, and yet also retain data consistency in relation to configuration and other state 
required by the topology.

Quorum can be defined as Q = n - floor((n - 1)/2) where:

� Q is the count of nodes required to maintain quorum, 
� n is the total number of nodes and floor function rounds down the number to its integer. 

For example, 4.7 becomes 4 after rounding.
Chapter 8. Field notes on modernization for API lifecycle 555



If there is a cluster with four nodes, then the quorum requirements would be as follows:

Q = 4 - floor(3/2)
= 4 - floor(1.5)
= 4 - 1
= 3

This implies that for a four-member cluster we can lose only one node and with the second 
node failure, we lose quorum.

Five-member cluster would again need three nodes as in the preceding formula. In other 
words, it can lose up to two nodes (40% fault tolerance) without losing quorum while a 
four-node cluster can lose only one node (25% fault tolerance). 

It can be noticed that the formula is favorable for odd number of members. So, it is advisable 
to go for odd number of members of nodes as they increase level of fault tolerance. Figure 8-9 
shows the pictorial representation of a node failure and its impact on quorum.

Figure 8-9   Node failure and its effect on Quorum

As it can be seen in Figure 8-9, high availability can't be implemented in less than a 
three-node setup.

What happens to API Connect components when quorum is lost?
The API Connect components are backed by different data store technologies and the 
behavior of the component is driven by their data store.

� Management system continues to serve traffic and supports read transactions but will not 
allow any changes to configuration, for example publication of new APIs, adding new 
users, creation of applications.

� Developer Portal would be unavailable preventing consumers from viewing and 
subscribing to the APIs.

� Analytics would allow viewing existing data but new data won't be ingested.
556 Accelerating Modernization with Agile Integration



� Gateway Server would continue to process existing API traffic but will not be able to 
support:

– API publications

– Onboarding new applications or subscriptions

– Rate limiting (quota enforcement)

– Token revocation

Now that we have described API Connect components and the quorum concepts, let’s cover 
few sample topologies. 

Sample topologies
We will discuss some common topologies and assess their high availability capability. 

Single cluster, single location setup
Figure 8-10 shows the single cluster, single location setup.

Figure 8-10   Single cluster, single location topology

This is the simplest API Connect high availability topology. Assuming that the components are 
placed as shown in Figure 8-10, let’s evaluate this solution against common failures:

� Node failure: Single node failure will not have any impact, but if two nodes fail then 
quorum would be lost and the components will behave as described earlier. 

� Data center failure: Application will not be available.

Advantages of single cluster setup are as follows:

� Simple single Kubernetes cluster setup.

Concerns of single cluster setup are as follows:

� Latency of < 30 ms is required between the nodes.
Chapter 8. Field notes on modernization for API lifecycle 557



� Single data center failure will cause complete outage.

Two-cluster, two-location, Active-Passive setup
Let’s now discuss the topology that has two Kubernetes clusters at two locations as shown in 
Figure 8-11.

Figure 8-11   Two cluster Active-Passive, two location topology

To overcome the single data center failure point, we can plan for two data center 
deployments, each having its own Kubernetes cluster and in active passive mode. The 
secondary data center would have to be kept preconfigured and ready to have instances of 
the services that are deployed through regular data sync up. In case of a primary data center 
failure, a secondary data center would be built with the last primary backup. This means that 
the customer would have to wait while the secondary data center is being enabled and only 
then can normal operations resume.

Let’s evaluate this solution against common failures:

� Node failure: Single-node failure will not have any impact, but if two nodes fail then 
quorum would be lost, and the components will behave as described earlier.

� Data center failure: In the event of primary data center failure, normal operations will be 
impacted until the secondary data center is brought up back online. The backup and 
recovery should be designed to meet recovery time and recovery point objectives of the 
organization.

The following are the advantages of this setup:

� Simple Kubernetes cluster setup at each site.

� It can survive single data center outage.

The following are the challenges of this setup:

� Latency of < 30 ms is required between the nodes within the same data center.

Gateway

Analytics

Developer Portal

Management System

Kubernetes Cluster
558 Accelerating Modernization with Agile Integration



� Regular backup and synching between the data centers is required.

� Backup and recovery processes should meet the Recovery Point Objective for data center 
failures.

� Unused spare capacity.

Single cluster, three location setup 
Figure 8-12 shows the single cluster, three location setup.

Figure 8-12   Single cluster, three location topology

This setup expands on the first suggested topology by keeping the three nodes of the single 
Kubernetes cluster in different location to avoid single data center outage scenario. Let’s see 
how this solution fares against. 

� Node failure: Single node failure will not have any impact, but if two nodes fail then 
quorum would be lost. 

� Data center failure: Like node failure, single data center failure will not have any impact, 
but if two data centers fail then quorum would be lost.

The following are the advantages of this setup:

� It can survive data center outage.

� It is IBM recommended topology from availability perspective.

The following are the concerns for this setup:

� Latency of < 30 ms is required between the data centers.

We covered few deployment scenarios and evaluated its high availability. It is beyond scope of 
this book to discuss the all the variations, but the principles discussed earlier can be extended 
to evaluate any topology. 

Gateway

Analytics

Developer Portal

Management System

Kubernetes Cluster
Chapter 8. Field notes on modernization for API lifecycle 559



8.6.2  Scalability of API Connect in containerized environment

API adoption rates are sometimes unpredictable and can lead to mismatch in the required 
versus the available infrastructure, so scalability is important. API Connect components can 
be scaled up or down independently as per customer requirement. 

APIC scalability is based on Kubernetes and provides operational consistency through 
standardized Kubernetes commands.

APIC can be scaled by using:

� Manual scaling through commands

� Horizontal Pod Autoscaler

Manual scaling
Manual scaling can be done in two ways:

� The required API Connect component can be scaled by using its StatefulSet.

Use the following command to find the statefulset names:

kubectl get statefulset -n <namespace> | grep gateway-service

Then, use the following command to scale in or out with the number of replicas that you 
require:

kubectl scale statefulset <StatefulSet name from above> --replicas=<desired no of 
replicas> -n <namespace>

For example,

kubectl scale statefulset r62bf86f4e0-dynamic-gateway-service --replicas=3  -n apic

� This can also be achieved by using the console. 

As an example see Figure 8-13 and Figure 8-14 on page 561.

Figure 8-13   Scaling a stateful set (i)

Note: The scalability that is discussed in this section applies to the scaling of the API 
management exposure layer and not to the implementation layer, which needs to be 
scaled independently. 
560 Accelerating Modernization with Agile Integration



Figure 8-14   Scaling a stateful set (ii)

Horizontal Pod Autoscaler
Horizontal Pod Autoscaler (HPA) can be used to monitor the resources and scale the replicas 
automatically. 

API Connect provides inbuilt policies that can be used for scaling. They can also be defined to 
suit project needs. For example, the YAML as shown in Example 8-1, creates an HPA, which 
spins an additional instance of gateway if the CPU usage goes beyond 5%.

Example 8-1   YAML example

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: gateway-hpa
  namespace: apic
spec:
  maxReplicas: 3
  minReplicas: 2
  scaleTargetRef:
    apiVersion: apps/v1
    kind: StatefulSet
    name: rf9ad2183d2-dynamic-gateway-service
  targetCPUUtilizationPercentage: 5

Figure 8-15 shows how to create custom scaling policy.

Figure 8-15   Scaling policy

This policy will spin a new instance of gateway when the CPU usage goes beyond 5%.
Chapter 8. Field notes on modernization for API lifecycle 561



Existing scaling policies can also be modified through console to scale a component. See 
Figure 8-16.

Figure 8-16   Edit scaling policy

Figure 8-17 on page 562 is a screen capture of scaling due to the preceding policy, as seen in 
logs.

Figure 8-17   Scaling logs

The scaling can also be verified by checking the pods as shown in Figure 8-18.
562 Accelerating Modernization with Agile Integration



Figure 8-18   Component after scaling up

Scaling using APICUP
apicup is the installer for API Connect on containers. In order to scale out with it, 
apiconnect-up.yaml (found under apicinstall folder) can be used. Run the following command 
to increase the replica count in the config. 

apicup subsys set <subcomponent name> replica-count=<desired no of replicas>

Then deploy the updated config by using,

apicup subsys install <subcomponent name> 

For example, with debug logs

apicup subsys install mgmt --out mgmt-out --debug

8.6.3  Conclusion

In this section, we discussed high availability and scalability concepts as applicable to APIC 
and then also discussed few sample deployment topologies. We also described how API 
Connect can be scaled both manually and automatically. 

The following are additional references:

� APIC white paper 1.0.8 https://www.ibm.com/downloads/cas/30YERA2R

� Link to APIC2018 Infocenter: 
https://www.ibm.com/support/knowledgecenter/en/SSMNED_2018/mapfiles/getting_sta
rted.html

8.7  IBM API Connect API Test Pyramid

The Practical Test Pyramid is a common methodology for implementing a testing strategy. In 
this section, we consider how this applies to an IBM API Connect solution.

8.7.1  Practical Test Pyramid

The Practical Test Pyramid, developed by Mike Cohn 1, describes initiating lots of quick, 
low-level, cheap tests on the smallest possible unit to give greater confidence that end-to-end 
flows will work. Whereas more expensive, time consuming, and disruptive test cases should 
be fewer in number and demonstrate connectivity with other systems or demonstrate that all 
unit tests work together.

Important: High-availability and scalability can be addressed only in a holistic way across 
the application landscape. API Connect resilience would be meaningless if other 
components of the solution are not equally resilient, such as back-end microservices API, 
ancillary applications, and databases.

1  Mike Cohn, Succeeding with Agile, Addison-Wesley Professional, 2009
Chapter 8. Field notes on modernization for API lifecycle 563

https://www.ibm.com/downloads/cas/30YERA2R
https://www.ibm.com/support/knowledgecenter/en/SSMNED_2018/mapfiles/getting_started.htm
https://www.ibm.com/support/knowledgecenter/en/SSMNED_2018/mapfiles/getting_started.htm


In Martin Fowler’s publication, The Practical Test Pyramid 
(https://martinfowler.com/bliki/TestPyramid.html), he talks about the categorization of 
the tests. He says that the words used to describe them can become conflated and detract 
from the general aim of creating systems that work. In our experience, the following usage of 
the pyramid best applies to an API Test Pyramid (see Figure 8-19 on page 564).

– Unit Test: A unit test denotes the smallest unit of API testing in a request being sent 
and a response received. Both must match service requirements.

– Integration Test: Often known as the Component Test, the use of integration as the 
test keyword shows that these tests should focus on APIs calling independent 
resources such as a database.

– Consumer Test: APIs are created by providers for the use of consumers. The 
consumer has an interaction with the whole system that includes any user interface, 
thus consumer testing applies to full end to end tests.

Figure 8-19   The test pyramid in the context of IBM API Connect

8.7.2  Requirements

It should not be left to the implementer of the API to dream up tests from thin air. They must 
be based on business requirements. Without this, the whole basis of testing is undermined. 

Before any API project begins, there should be a clear description of the expected outcomes. 
What the project is trying to achieve and what is the minimum request and response that must 
be delivered in order for the API calls to be successful? These expected outcomes are the 
requirements of the project, without which no tests can be written and thus no APIs can be 
written.

Requirements state explicitly what is and is not permitted which allows both positive and 
negative testing to be completed and might be based on industry and enterprise standards 
and specifications.

Tests that are written without requirements will either use existing code and implementation 
as a source of truth or will rely on the developers view of what should be occurring. It is also 

Consumer
Testing

Integration
Testing

Unit
Testing
564 Accelerating Modernization with Agile Integration

https://martinfowler.com/bliki/TestPyramid.html


possible for these tests to be disputed, because there is no individual source of truth for what 
the implementation should be doing to meet business needs.

8.7.3  Test types

In this section, we explore how different test stages in the API Test Pyramid apply to an IBM 
API Connect solution.

Unit tests
The primary question when discussing Unit Testing is what makes up the smallest, testable, 
self-contained component, as derived from the requirements. A unit test for an API should not 
call a back-end service. It should not rely on making requests from outside the API Connect 
domain and should be executable in any simple IBM API Connect environment.

The smallest testable unit for API Connect APIs consist of the four components that make an 
API:

� Its address

� Its operation

� Request data

� Response data

An API has a primary data representation that is called a resource, which is the conceptual 
mapping to a set of entities. The address of the resource is displayed as a Uniform Resource 
Identifier (URI) which is crucial to making an API call. 

Addresses will have tests such as; 

� Does an exposed address return a correct result? 

� Are unspecified addresses correctly handled? 

� Are misspelled addresses correctly handled?

An operation is the method of a REST API that determines what action to perform on the 
resource. The four main HTTP verbs that define the operation are; GET (read), PUT (update), 
POST (create), and DELETE (delete). 

Operation Unit Tests make requests to valid addresses to ensure that the API exposes only 
the verbs that are outlined in the requirement. This test is simply about operation exposure.

Simple security tests might also be applicable here like the absence of tokens, client IDs, or 
certificates for secure endpoints. But they are unlikely to include more advanced tests such as 
OAuth, which would be more applicable in integration tests as multiple calls are needed.

Request data normally refers to a list of headers and the body of data that is passed with an 
operation to an address. Tests at this level focus on whether the correct data is provided, the 
correct headers are used, and that incorrect headers or malformed data are handled 
correctly.

Response data normally refers to how the resource call will respond to the request. The data 
usually includes a status code, headers, and a body. Tests at this level aim to ensure that valid 
and expected output is received when certain requests are passed into the system. Additional 
tests will be used for the handling of both successful and failure scenarios. 

The simplest unit test topology is shown in Figure 8-20 on page 566.
Chapter 8. Field notes on modernization for API lifecycle 565



Figure 8-20   Unit test topology

Unit testing GatewayScript fragments
From the API Connect perspective, this is the lowest logical unit. Deeper testing has little 
benefit. While lower-level testing within the API of specific fragments of gateway code logic 
might provide some assurance, having quickly deployable unit tests that implicitly exercise 
that same gateway code can give the same level of confidence. Testing the inner workings of 
the API is irrelevant if the correct response is achieved. 

Moreover, lower-level testing adds extra overhead in order to implement a unit testing 
codebase and runtime environment, which might inadvisably lead developers to test outside 
of a DataPower runtime. It is important to note that gateway programming model is security 
that is hardened and enriched with DataPower-specific functions where you access and 
manipulate the variables in the API context during execution. As such, any attempt to test 
fragments of GatewayScript in an independent runtime is likely to be invalid.

Unit testing of APIs in API Connect should be concerned with the unit only, which in IBM API 
Connect is processing of a request and the expected response.

Ideally, you do unit tests on a smaller runtime environment (such as using Docker image for 
DataPower). That way, the tests can be isolated to a single change, which would help to build 
consistent pipeline deployments. Using a shared environment brings operational challenges.

Unit tests should not connect to real back-end systems, because they must be able to run 
independently. If you connect to real backends for unit tests, you increase the runtime 
dependencies of the unit tests. 

Integration tests
After you confirm that the API’s work in isolation, you can perform integration tests. These 
tests can confirm whether connectivity with other services works and that the results are 
handled and remain valid for the requirements.

The concept of Contract Testing is discussed in The Practical Test Pyramid and is applicable 
to API Connect API testing as well. Connecting services have similar request/response 
testing as performed for APIs.

By mapping expected requests to expected responses, each integrated service has a 
contract of integration. If the way that the API behaves changes, the providing service should 
notify the consumers as part of the release. 

API Gateway

API Definition

Test Suite

Mock
566 Accelerating Modernization with Agile Integration



Integration tests look to make calls to connected systems such as a database, microservice, 
or load-balancing service. Each connection should be handled independently without multiple 
linked tests across several systems and services. This might mean exposing unit test 
environments to other systems so they can perform isolated integration tests between the 
IBM API Connect layer and the singular service it is calling.

These tests should try to call services that have no dependencies on other services. While 
the API Connect layer has no control of the services they call, it is better to call a service 
whose own back-end service is mocked for these tests. That way, the integration is affected 
by only the integrated services. 

Sample integration test topologies are shown in Figure 8-21.

Figure 8-21   Integration test topologies

Testing of integration in API Connect is the one-to-one communication of the service 
immediately before or immediately after the API unit. 

Consumer tests
Also known as end-to-end testing, these tests reach each service of the system as a full flow 
in the same way that consumers do. Unit testing has already covered a wider API base and 
integration tests that are already connected to each connected service. So, you should limit 
consumer testing to only what you expect the API consumer to complete.

At this stage, consider independent users who do not know how the API works internally and 
are not directly involved in development or lower-level testing of the component parts. This 
type of test case uses the system like an API consumer does, to see if there are issues 
outside of the current test scenarios. This concept is known as Exploratory testing.

Consumer tests might also include application creation, API subscription, and API test call 
through user interfaces. This should include testing of how the system is used by API 
consumers. The goal can be to ensure that the themes, buttons, and selection boxes all work 
as intended in a process known as User Interface (UI) testing. 

While UI tests cover a lot of the usability tests, a thorough end-to-end testing should be 
conducted. This looks at user journeys through the system. The tasks include creating an 

API Gateway

API Definition

Test Suite

Mock

Client

MicroService

API Gateway

API Definition

Test Suite

Mock

Client
Chapter 8. Field notes on modernization for API lifecycle 567



application and subscribing APIs, logging in to the system, and performing a series of linked 
API calls such as an Oauth2 flow.

The consumer test topology is depicted in the Figure 8-22.

Figure 8-22   Consumer test topology

Testing at the consumer level looks at the full end to end journey experienced by the 
consumer. Each flow should behave as the consumer expects including API responses, user 
interfaces that might be required and redirection to other services.

8.7.4  Automated testing

It is possible to perform automated testing at each layer of the pyramid with initial testing on 
as updates to the API definition are pushed to a code repository. Build tests might include:

� YAML validation tests

� JavaScript validation

� JavaScript Linting - checks against a custom set of specifications such as line length

� API deployment

� Test application subscriptions

� Complete run of unit tests

� Complete run of integration tests

� Automatable consumer tests

Following successful completion of the test suite in one environment (for example 
development) the artifact can be made ready for combined testing in integration tests. In 
those tests potential changes to multiple APIs can be tested at the integration and consumer 
level by running the automated tests against the System Integration Environments. 

All non-breaking APIs will be pushed (in an automated way) to non-functional tests. At this 
stage, they once again follow the automated test procedures before the APIs failing 
performance tests are removed from the release.

API Gateway

API Definition

Test Suite

Client

MicroService

Datastore
568 Accelerating Modernization with Agile Integration



The remaining changes are pushed through into User Acceptance Testing (UAT) 
environment. At this stage, you also complete the automated tests, but with additional manual 
exploratory test scenarios. And you carry out these tests in the most production-like 
environment possible, before the same process proceeds into production.

The high-level process diagram of automated testing is shown in Figure 8-23 on page 569.

Figure 8-23   Automated testing

8.7.5  Conclusion

In this section, we have explored how The Practical Test Pyramid can be used in the context 
of IBM API Connect. An overview has been given on the three types of testing: unit testing, 
integration testing, and consumer testing.

It is important to consider what makes up the independent unit of an API, which we have 
described as a request and response that use the IBM API Connect and IBM DataPower 
Gateway in isolation.

Additional stages such as the integration testing and consumer testing are simply names that 
best describe the actions that apply in this context. Descriptions for them follow the general 
rules that are defined in the Practical Test Pyramid.

Local Repo

1. Validate
2. Lint
3. Unit Test

Artifact SIT

1. Unit Test
2. Int. Tests

NFT (L)UAT Production

1. Unit Test
2. Perf. Tests

1. Unit Test
2. Int Tests
3. Cons. Tests

- e2e (Full)
- UI (light)

Code Test Type

Int. Integration

Perf. Performance

Cons. Consumer

E2E End-to-end

UI User Interface

1. Cons. Tests
- e2e (Full)
- UI (Full)

Rejected APIs
Chapter 8. Field notes on modernization for API lifecycle 569



570 Accelerating Modernization with Agile Integration



Chapter 9. Field notes on modernization for 
messaging 

This chapter explores the typical stages that customers go through as they progressively 
modernize their IBM MQ environment. You learn how best to implement IBM MQ in a 
container orchestration platform in order to leverage its inherent availability capabilities. We 
also discuss IBM MQ scaling and automation of IBM MQ provisioning.

This chapter has the following sections:

� Modernizing your messaging topology with containers
� IBM MQ availability
� IBM MQ scaling
� Automation of IBM MQ provisioning using a DevOps pipeline

9

© Copyright IBM Corp. 2020. All rights reserved. 571



9.1  Modernizing your messaging topology with containers

IBM MQ first provided support for containers in 2015, and rapidly embraced container 
orchestration technologies such as Kubernetes and OpenShift to allow managed production 
grade deployments. IBM MQ has continuously innovated over the years such that today it is 
just as at home in traditional deployments as it is in cloud native environments. Runtimes 
start-up in seconds and are arguably the most performant on the market. Container 
orchestration provides high availability as standard. When this is combined with cloud native 
features recently added to IBM MQ such as uniform clusters, scaling is simple and natural 
within a container environment. 

However, as we made clear in Chapter 4, “Cloud-native concepts and technology” on 
page 85, there is much more to moving to containers than simply a change in infrastructure. 
For each technical area there are different subtleties to be considered as we move towards 
containerization. In this section we explore the typical stages that customers go through as 
they progressively modernize their IBM MQ environment. 

Figure 9-1   Modernizing an IBM MQ infrastructure using containers across three discrete stages

As summarized in Figure 9-1 this section describes how an IBM MQ estate can be 
modernized by using containers across three discrete stages.

� Remove local connections: Ensuring that IBM MQ is running separately of the 
applications it serves such that its availability and scaling is independent. 

� Containerized queue managers: Move the queue managers into containers to gain 
greater standardization, and consistency on an operational level, especially if applications 
are also moving to containers. 

� Fine grained queue managers: Reducing the dependencies between sets of queues by 
separating them into discrete queue managers and potentially allowing application teams 
greater ownership. 

Traditional Deployment Remote connections Containerized Fine-grained

Technical change: 
Remove local 
connections

Potential benefits:
Independent 

availability and  
scalability

Technical change: 
Move to 

container platform
Potential benefits:

Portability
Operational consistency

Infrastructure optimization

Technical change: 
Fine-grained

Pipeline/build automation
Potential benefits:

Agility
Evergreening

Environment Integrity

ApplicationVirtual 
Machine

Remote
Queue Manager ContainerLocal 

Queue Manager
572 Accelerating Modernization with Agile Integration



It should be noted up front that while these are common progressions based on real 
customers, of course every customer’s environment is different, and it might make sense for 
you to do things in a different order to we depict here. As such it is more important to 
understand the reasons behind each stage than to be too focused on the order. 

We begin by introducing a typical IBM MQ infrastructure, then walk through each of the 
preceding stages to see how it evolves. 

9.1.1  Typical existing topology

Figure 9-2 on page 573 is an illustration of a typical current IBM MQ infrastructure:

Figure 9-2   Typical traditional IBM MQ environment

An existing IBM MQ estate might include many queue managers as depicted in Figure 9-2. 
Some installed locally alongside applications (for example Applications A and B), some 
separate, but logically associated with applications (as shown with application D), and also 
central IBM MQ instances. Although deployed differently, often all of the IBM MQ instances 
are controlled by a central IBM MQ team. 

The existing IBM MQ estate will include different types of connectivity between the 
applications and IBM MQ. IBM MQ supports two options for connecting to a queue manager:

� Local connections: Applications that have a locally installed queue manager on the 
same operating instance can connect by using local inter-process communication. This is 
called a server binding.

� Remote connections: Applications running on a separate operating system can 
communicate remotely over a network connection. In the IBM MQ documentation this is 
called a client binding, but in this document we will use the product-agnostic term remote. 

VM

VM

App. C

VM

App. D

VM
QM

VM

VM
Application A

QM

QM

Application B

Local connection

Network connection

VM Virtual machine

VM

App. E

QM

QM
Queue manager
(tied to application 
availability/scalability)

QM
Queue manager
(with independent 
availability/scalability)

Tip: Technically this binding can also be used to connect to a local queue manager, but 
as you would expect, the connection traverses the network.
Chapter 9. Field notes on modernization for messaging  573



The locally installed instances might be there for a specific reason such as to enable 
coordination of global transactions, or to enable them to function even when they are 
disconnected from the network. However, in some cases it will simply be for historical 
reasons. In the past, due to less reliable networking, locally installed IBM MQ was the norm. 
For early versions of IBM App Connect (up to what was then called IBM Integration Bus v10), 
a local IBM MQ server was a hard dependency on installation. Interestingly, the 
administration of these local instances might still be performed by the central IBM MQ 
administration team, due to the specialized knowledge that is required.

As networks became trustworthy, more recent applications would be more likely to use a 
remote queue manager such that it could be administered separately more easily. 
Applications might still have a dedicated instance of IBM MQ per application, such as for 
Application D. This might be due to the particular requirements that the application team had 
for isolation, performance, or security for example. See Figure 9-3.

Figure 9-3   Adding queues to the shared queue manager as we introduce more applications

However, as the number of applications increases, we often see shared queue managers that 
host queues for multiple applications, to provide a perceived simplification in administration. 

In addition, some or all of these instances might not be included in an IBM MQ cluster. 
However, for simplicity we will leave clustering until later when we discuss availability, scaling, 
and routing. 

9.1.2  Removing local connections 

As noted, the need for local connections (server bindings) has diminished, as the robustness 
of remote connections has increased dramatically. Removing the need for a local IBM MQ 
installation has many advantages. It is one less thing for the application team to deal with 
when configuring their application. Furthermore, they no longer need to concern themselves 
with how to scale IBM MQ and the application together. See Figure 9-4.

VM

VM

App. C

VM

App. D

VM
QM

VM

VM
Application A

QM

QM

Application B

Local connection

Network connection

VM Virtual machine

VM

App. E

QM

QM
Queue manager
(tied to application 
availability/scalability)

QM
Queue manager
(with independent 
availability/scalability)

VM

App. G

VM

App. F

VM

App. H
574 Accelerating Modernization with Agile Integration



Figure 9-4   Removing local connections, and moving local queue managers to separate VMs

This also turns out to be an excellent first step in the direction of moving to containers, 
because a preferred practice is that a container runs only one process. This enables 
containers to be administered more simply by orchestration environments such as 
Kubernetes. So, having isolated the queue managers from the applications they are in a 
better position to be containerized. 

9.1.3  Containerizing queue managers

The next logical step is to take the existing queue managers and move them each into a 
container of their own as shown in Figure 9-5 on page 576.

VM

VM

Application A

QM

QM

Q

Q QQ

Q

Q

Q Q

Application B

VM

VM

QM

QM

VM

VM

Application A

Q Q

QQ

Q

Q

Application B

Q

Q

Local connections Remote connections

Local connection

Network connection

Q

Q

Application only queue

Cross-application queue

VM Virtual machine

QM
Queue manager
(tied to application 
availability/scalability)

QM
Queue manager
(with independent 
availability/scalability)
Chapter 9. Field notes on modernization for messaging  575



Figure 9-5   Basic, coarse-grained adoption of containers

Figure 9-5 deliberately does not show the detailed configuration of IBM MQ from an availability 
and scalability viewpoint, as we will discuss the considerations here in more detail later.

9.1.4  Fine-grained queue manager deployment 

As noted, many enterprises have evolved to have centralized, shared IBM MQ deployment, 
where one or more queue managers have been deployed together on highly available 
infrastructure. This setup is often deliberately created to assure a central enforcement point for 
the IBM MQ administrators to govern and maintain. Initially this might appear ideal, but there 
are several issues:

� If multiple applications use the same queue manager, maintenance must be scheduled 
across application teams. Dependencies across multiple teams are challenging to arrange 
and often cause additional effort and delays.

� If an application uses messaging resources on the same machine as other applications 
there are limited amounts of isolation that can be provided. For instance, there is no easy 
mechanism to limit the CPU that one application can use compared to another application.

Applications want control over their IBM MQ resources, and this requires isolation to avoid 
application teams from affecting each other. For instance, a team might want access to the 
latest features of IBM MQ, while others do not. The use of a container orchestration platform 
enables isolated fine-grained IBM MQ resources to be created and managed in a 
standardized way. This is true, even though they ultimately run in completely separate 
containers as shown in Figure 9-6 on page 577. 

Container
Platform

VM

App. C

VM

App. D

QM

VM

VM
Application A

QM

QM

Application B

VM

App. G

VM

App. E

VM

App. F

VM

App. H

Network connection

VM Virtual machine

QM
Queue manager
in a container
576 Accelerating Modernization with Agile Integration



Figure 9-6   Fine-grained queue managers

Fine-grained queue managers mean that individual applications have separate queue 
managers. This setup overcomes the preceding situation, because isolation containers are 
provided for each application. 

The fine-grained architecture will increase the number of queue managers within the 
enterprise, which introduces some new considerations. 

� Disposability: When you develop cloud-native components, the component instance is 
designed and built to be disposable and immutable. Traditionally IBM MQ queue managers 
were treated as build once, and then continuously nurture from that point forward. An IBM 
MQ queue manager is indeed a stateful application. But that does not mean that an IBM 
MQ queue manager runtime itself cannot be disposed of, when no longer needed. 
Likewise, this runtime can also be spun up, on demand. This characteristic is especially 
useful in testing scenarios. Special considerations are needed for assured delivery 
scenarios. But overall, there are many cases where a more “disposable” deployment style 
is appropriate for IBM MQ.

� Maintenance: Having an effective mechanism to centrally manage and automate 
maintenance, becomes critical or the administration overhead would become 
overwhelming. We need to provide continuous adoption (see 4.2.11, “Continuous 
Adoption” on page 98) for the IBM MQ runtime. IBM MQ has two delivery streams: the 
traditional long-term support (LTS) and the continuous delivery (CD) stream that provides 
early access to new features. If we want the latest features and want to be up to date on 
security patches, CD stream would be the ideal choice. The resultant image can then be 
rolled out across the deployments either automatically or based on a minimal approval 
step. Ideally, we limit any downtime experienced by the application, by providing multiple 
logically identical instances of IBM MQ, and allow an application to connect to any. This 
could use the new “uniform cluster” capability that was mentioned previously, to provide 
additional capabilities during upgrading and failover scenarios. We look at this in more 
detail in 9.4, “Automation of IBM MQ provisioning using a DevOps pipeline” on page 594.

� Monitoring: Deploying on a container orchestration platform (such as OpenShift) allows 
for centralized monitoring across all instances that are deployed to the platform. 
Cross-component tracing and diagnostics can be achieved for instances of other related 
components, too. 

VM

App. A

VM

App. B

Container
Platform

QM

QM

QM

Network connection

VM Virtual machine

VM

App. D

QM

VM

App. F

QM

VM

App. H

VM

App. C

QM

VM

App. E

QM

VM

App. G

QM
Queue manager
in a container
Chapter 9. Field notes on modernization for messaging  577



9.1.5  Decentralization

Modernizing the people and process is critical to assuring a successful modernization. 
Typically IBM MQ has been the responsibility of a central IT team. They built, configured, and 
maintained the MQ infrastructure on behalf of the application teams — a highly centralized 
ownership model that is shown in Figure 9-7. 

Figure 9-7   Highly centralized ownership model

This created friction, as the development teams want more control to change the 
configuration, while the central IT team felt they are bombarded by requests of development 
teams. A common way to address this tension is to enable a more agile deployment model 
that offers the potential to have more decentralized ownership of MQ resources where 
appropriate:

� Application-owned IBM MQ resources: Development teams would like to move to a 
more autonomous ownership model. They want access to update the IBM MQ resources 
to complete day-to-day activities, such as creating queues, topics and subscriptions, and 
potentially even to create their own queue managers. The precise capabilities a 
development team would have access to, and within which environments (development, 
test, pre-production, and production) would depend on each organization.

� Self-service: When a development team starts a project that requires messaging, they 
will want a sandbox environment to kickstart their development. Traditionally the central IT 
team provided a sandbox and might have required several days or weeks to do so. Now, 
sandbox deployment is often automated and available to the development teams through 
a self-service portal, for example. As a result, development teams can immediately 
provision an IBM MQ queue manager instance, often within a matter of minutes.

� DevOps pipeline: In early-stage environments such as development, the creation of IBM 
MQ instances and objects might be completed using web portals. However, this practice 
will quickly mature to be driven by a DevOps pipeline. This pipeline will allow application 
teams to load definitions of IBM MQ resources into a code repository alongside their 
application code. And then the deployment is automatically built, deployed, and tested 
with their application.

This more decentralized approach to messaging capabilities is highlighted in Figure 9-8. 

VM

App. A

VM

App. B

Container
Platform

QM

QM

QM

Local connection

Network connection

VM Virtual machine

QM Queue manager

VM

App. D

QM

VM

App. F

QM

VM

App. H

VM

App. C

QM

VM

App. E

QM

VM

App. G

C
en

tr
al

ly
ow

ne
d

578 Accelerating Modernization with Agile Integration



Figure 9-8   Decentralized ownership 

Clearly there are few organizations where the application teams would willingly take on the 
entire role of looking after their own IBM MQ estate. In addition, queues form a core part of 
the enterprise’s communication infrastructure and as such, we would want to ensure a level of 
governance over how they are deployed and configured. 

Figure 9-9   The reality - a combination of both centralized and application-based ownership

Typically we see a natural split of responsibilities between central and application teams as 
shown in Figure 9-9. The central teams focus on ways to templatize and automate the 
messaging capabilities. The application teams use those patterns and templates to create the 
queues that they require. Let’s briefly look at that in a little more detail. 

The central team’s key concern is that the IBM MQ infrastructure is rolled out in a 
well-controlled and governed way based on good practice. They would focus on the creation 
of templates and patterns to use for the creation of queue managers and their accompanying 
channel definitions. This might for example provide different templates for different usages, 
such as “t-shirt sizes” for small/medium/large usage profiles (as we do on IBM MQ on Cloud), 

VM

App. A

VM

App. B

Container
Platform

QM

QM

QM

Local connection

Network connection

VM Virtual machine

QM Queue manager

VM

App. D

QM

VM

App. F

QM

VM

App. H

VM

App. C

QM

VM

App. E

QM

VM

App. G

C
en

tr
al

ly
ow

ne
d

Application
owned

Application
owned

Application
owned

Application
owned

Application
owned

Application
owned

Centralized
ownership

Application
ownership
Chapter 9. Field notes on modernization for messaging  579



to simplify choices. Along with that would come defaults that relate to aspects such as log 
configuration, what persistent volume capabilities to use, and so on. 

The application team would then have ownership of the actual creation of queue managers, 
queues and topics based on those patterns and templates. They would then be responsible 
for the runtime administration of the queues, and for consumer-specific requirements such as 
the level and type of security to place on the queues. 

So, the traditional central messaging team would no longer perform all IBM MQ provisioning 
onto a shared infrastructure. They would instead build out Messaging as a Service for other 
teams (for example non-messaging engineers from application teams) to consume via 
self-service. 

It is worth noting that to enable self-service effectively requires a very different way of working 
for the central team. There needs to be a high degree of patternization. As a result, queue 
topologies can be built in simply, predictably, and most importantly, through automated 
pipelines. Furthermore, roles of at least some of the central team would need to move more 
towards that of Site Reliability Engineers to ensure continued improvements in scalability, 
reliability and automation of the administration of the environments. The payback for this of 
course is that the patternization and automation enables the central IT team to retain some 
level of governance across an increasingly decentralized landscape. 

We explore pipeline-based deployment of IBM MQ in more detail in 9.4.1, “Design for DevOps 
pipeline” on page 594.

9.1.6  Application containerization and operational consistency

Throughout this section so far, we have focused on modernization of the IBM MQ 
infrastructure in isolation. However, it is likely that the applications themselves are also 
undergoing modernization. For example, we might be refactoring an application into a number 
of smaller microservice components, and it is likely that these too are destined to be run in 
containers. 

Consider a scenario in which we have already moved to the use of remote queue managers 
rather than local ones. In turn, we use remote clients, rather than local connections. So, from 
a connectivity standpoint, it makes little difference whether the application is containerized or 
not. They simply continue to use the client binding as they did before.

However, there is another aspect that might make a combined move to containers for both 
application and IBM MQ more attractive. A move to containers is more than just an 
infrastructure change, it also brings in standardization of many other things that were 
previously specific to each product. A container orchestration capability such as Kubernetes 
provides common mechanisms for topology deployment, workload routing, high availability, 
health checking, scaling, handling of credentials and more. Indeed, commercial versions of 
Kubernetes often standardize much more, such as monitoring, security and logging. We call 
this operational consistency and it essentially means that the operational skills required to 
look after the environment are consistent across products, simplifying management of a 
diverse technology portfolio. See Figure 9-10.
580 Accelerating Modernization with Agile Integration



Figure 9-10   Containerized integration and applications that bring operational consistency

9.2  IBM MQ availability

Within this section we discuss how best to implement IBM MQ in a container orchestration 
platform in order to leverage its inherent availability capabilities. 

First, we should recognize that the topic of availability has a subtle nuance when applied to 
messaging. There are two aspects: message and service availability. 

� Message availability: Message availability relates primarily to the ability to perform 
message “gets” (as opposed to “puts”) and specifically to whether all currently stored 
messages are available. With IBM MQ distributed, a message is stored on exactly one 
queue manager. If that queue manager becomes unavailable, you temporarily lose access 
to the messages it holds. To achieve high message availability, you need to be able to 
recover a specific failed instance of a queue manager and its message as quickly as 
possible. 

� Service availability: Service availability helps ensure that you can always “put” to a 
queue, and you can always “get” some messages (even if a subset of messages is 
temporarily unavailable). You can achieve service availability by having multiple 
instances of queues for client applications to use on different queue managers. When 
continuous availability is discussed, it is usually in relation to service availability.

When you architect for availability, it is critically important to target the type of availability that 
is most important for your specific application needs.

Container
Platform

µs
A1

QM

QM

App. A
owned

App. B
owned

µs
A2

µs
A3

µs
B1

µs
B2

µs
B3

µs
B2

Microservice from application B
running in a container

Local connection

Network connection
Q

Q

Single application queue

Multi-application queue

QM Queue manager running in a container

QM

QM
Chapter 9. Field notes on modernization for messaging  581



9.2.1  Kubernetes deployment styles: Deployments (replica sets) versus 
stateful sets 

Kubernetes provides two approaches for managing sets of containers: deployments (which 
use replica sets in the background) and stateful sets. 

� Deployments (based on replica sets): As the name suggests Deployments that are 
based on replica sets allow Kubernetes to create “replicas” of the container. In this 
situation, the containers are considered completely indistinguishable. So, they can be 
created and destroyed by Kubernetes at will. As such they cannot be uniquely identified 
and addressable. The precise number of replicas is purely a target for Kubernetes to aim 
for, and there might be more or less than that number at any given time. They can have 
persistent storage attached, but it is typically shared across all replicas. As such it should 
not be used for replica-specific state. 

� Stateful sets: Stateful sets are different in that they are created explicitly with sequential 
names, and each one can be addressed directly. The number of replicas is precise, and 
Kubernetes will aim to ensure all replicas requested (and no more) are present. Should 
one of the containers be lost, it will be reinstated under the same name, with the same 
instance of persistent storage attached.

The replication performed by the preceding types of sets actually happens at the level of a 
Kubernetes “Pod” rather than on the containers themselves. However, in this instance there is 
a one-to-one relationship between queue manager, container, and pod. So, for simplicity in 
this short section we just talk in terms of containers. 

From an IBM MQ perspective, there is one condition that is critical regardless of which of the 
preceding high availability types that we are targeting. For any given queue manager state 
that is held on shared storage, there cannot be more than one active queue manager. This 
restriction is common in stateful components to ensure data integrity. This means that we 
need to use a specific type of deployment mechanism on Kubernetes. For completeness, we 
should briefly note that for IBM MQ on mainframe, we actually can share persistent storage 
across two active queue managers by using “shared groups.” But that is unique to that 
platform. Here, we are discussing non-mainframe installations only, where there can only be 
one active queue manager. 

Replica sets allow the platform to perform very elastic scaling of the component based on the 
replication settings provided. However, during this highly dynamic creation and deletion of 
replicas, the replica count is approximate rather than exact. As such, even if we have only 
asked for one replica, we can for a brief moment have two replicas running. As we know, in 
IBM MQ it is not acceptable for multiple containers to represent the same queue manager. 

Even if we were to set up persistence such that each replica had its own separate storage, 
there are other reasons why we cannot use replica sets. Primarily this is because they do not 
provide specific addresses to the individual replicas, which is required in many 
circumstances. The following are common examples:

� Applications often require connectivity to a specific queue manager to assure request 
messages are processed. This would require a separate network address for each queue 
manager. 

� Capabilities such as the IBM MQ uniform cluster — which we will discuss later — depend 
on a dedicated endpoint for each queue manager. 

� Transactional recovery depends on the ability to reestablish a connection to the same 
logical queue manager after a failure.
582 Accelerating Modernization with Agile Integration



� JMS connectivity sometimes creates two separate connections to a queue manager for a 
single logical connection. Kubernetes might cause these two connection attempts to be 
distributed across different queue manager replicas, resulting in a failure of the interaction. 

Figure 9-11 shows reinstatement on container failure for replica sets and stateful sets. 

Figure 9-11   Replica sets and stateful sets – reinstatement on container failure 

Kubernetes’ stateful sets overcome this by providing a much more stringent management of 
their containers. They ensure that the replica count is a maximum value. So, for example, we 
only ever have one queue manager running if the replica count is 1. The stateful sets also 
enable the specific replicas within the set to be addressable. As a result, in nearly all cases, 
we use stateful sets to deploy IBM MQ in containers. 

Single resilient queue manager pattern
We’ll begin with the simple cold-standby pattern, as translated into Kubernetes. This has 
become known as the single resilient queue manager pattern, as shown in Figure 9-12. 

Figure 9-12   Single resilient queue manager (equivalent of traditional cold standby)

Kubernetes

Relaxed 
automatic

reinstatement

Container Container
Replica Set
replicas=1

Kubernetes

Precise
automatic 

reinstatement

Container Container
Stateful Set
replicas=1

Possibility of more than one active container 
during failover situations

Strict maximum of one active container 
during failover situations

Container 
failure

Container 
failure

Kubernetes

Container

Queue 
Manager
(active)

Application

MQ GET

Re-instate 
on failure

MQ PUT

Application(s)

Persistent 
volume

Stateful
Set
Chapter 9. Field notes on modernization for messaging  583



This pattern uses Kubernetes in-built availability capabilities to ensure that one and only one 
instance of the queue manager is always running. Should the queue manager fail, 
Kubernetes will reinstantiate the container on a node within the Kubernetes cluster that has 
sufficient resources. The queue manager data is stored on a persistent volume to ensure that 
it is not lost when the container instance is shut down, and that it can be attached to the new 
container as it is started up.

This would seem to be a complete solution were it not for a subtlety in the way that 
Kubernetes handles Stateful Sets under specific circumstances – namely a failure of a worker 
node, as explained in the next section.

Worker node failures and stateful sets
A node in Kubernetes terminology is simply a machine instance (for example a virtual 
machine) in the Kubernetes cluster. Kubernetes clusters contain various types of nodes but 
the ones we most care about in this section are “worker nodes”. These are the nodes on 
which our containers can run. 

The simplest failure scenario for a container is that we lose the container instance, but the 
worker node continues to run. Assuming there are still enough resources available, 
Kubernetes spins up a new instance of the container. Potentially it places the instance in the 
same node, reattaches it to the persistent volume, and makes the queue manager available 
again.

However, there will obviously be circumstances when a worker node itself fails, bringing down 
all its running containers too. Kubernetes will then be forced to seek out a new node on which 
to start the container. For deployments (replica sets), this happens automatically, and by the 
magic of the orchestration platform, largely invisibly to the users of the container. 

Figure 9-13 shows reinstatement on node failure for replica sets and stateful sets.

Figure 9-13   Replica sets and stateful sets – reinstatement on node failure

Kubernetes

Worker Node (VM) Worker Node (VM)

Automatic
reinstatement

Container Container
Replica Set

Manual
reinstatement

Container Container
Stateful Set

Node 
failure
584 Accelerating Modernization with Agile Integration



Stateful sets promise to be stringent on the number of container instances that they 
instantiate. However, they need to be absolutely certain that the container on the current 
node had really disappeared. This requires confirmation of the node failure, which it turns out, 
is surprisingly difficult to ascertain. What if the node is still running, and performing work but 
Kubernetes just can’t communicate with it? For this reason, currently Kubernetes will not start 
the container automatically on another node. It waits for an external actor such as a system 
administrator to confirm whether it is safe to restart the container by issuing a manual delete 
command to force the failover.

While it is obviously good that Kubernetes is cautious in this situation, it makes it difficult for 
us to provide a fully automated highly available environment. There are some third-party 
solutions that offer resolutions to how to see whether a node is truly down, but they are not 
part of a default Kubernetes deployment. In fact, we have a mechanism already available in 
IBM MQ that can help resolve this issue. 

9.2.2  Multi-instance queue managers in containers

It turns out that IBM MQ’s multi-instance queue manager capability is already a great fit for 
solving this problem. It enables us to rapidly spot that a queue manager is no longer running 
on the original skill and know with confidence that it is safe to start another one in its place. 

Figure 9-14 shows the container-based multi-instance queue manager concept.

Figure 9-14   Container-based multi-instance queue manager

We can create a stateful set that contains exactly two, multi-instance queue managers that 
share the same persistent volume. We did not tell Kubernetes which worker node to put each 
container on. As a general rule, we do not want to do this. We prefer that the platform make 
that decision based on the available resource on the nodes. Instead of assigning nodes, we 
provide affinity guidance that says we want each of the containers within any given stateful 
set to be on different nodes to ensure availability.

Kubernetes

Worker
Node

Worker
Node

e a o e

Application

MQ GET

Multi-
instance 
failover

MQ PUT

Application(s)

Persistent 
volume

Container

QM
(active)

Container

QM
(warm

standby)

Stateful
Set
Chapter 9. Field notes on modernization for messaging  585



IBM MQ’s multi-instance queue managers automatically check the file locks on the persistent 
volume at startup to establish if another queue manager is active. If the file lock has been 
taken, the second instance will sit waiting in (warm) standby mode. Should there be a failure 
of the active container — or indeed, of the whole worker node on which it sits — the file lock 
is released, and the standby queue manager immediately becomes active and is available to 
service requests. The manual activity required to reinstate the original queue manager still 
needs to be done, but it is no longer on the critical path. 

In the last paragraph we mentioned the importance of file locking on the shared storage. To 
make this work, your persistent volume provider must provide the following features:

� The ability to perform ReadWriteMany (RWX) (that is, active on more than one pod at a 
time), as opposed to ReadWriteOnce

� The RWX file system also must have suitable file locking semantics to support IBM MQ’s 
multi-instance requirements 

Both of these requirements are specific to the multi-instance queue manager capability and 
are not provided by all persistent volume providers, so you do need to check the details 
carefully. 

9.2.3  Further improving service availability with additional independent queue 
managers

Although the failover speed of multi-instance queue managers is rapid, often in the order of 
only a few seconds, it is still measurable. A very brief outage still might be perceived by 
messaging clients. The only way to provide an almost completely seamless transition on 
failover would be to have another queue manager already active. 

We can have only one fully active queue manager against any given set of queue data (on 
non-mainframe platforms). As a result, the queue manager that you maintain in this state 
would have to be completely independent, with separate queue data (although with queues of 
the same name). Our application could then immediately reconnect to the second queue 
manager if our current queue manager fails. 

From a service availability point of view, this would ensure an even higher availability for both 
message “puts” and “gets”. It’s worth noting that the “message availability” remains the same. 
There will now always be at least one queue manager available to retrieve messages from 
(service availability). However, the messages on the failed queue manager will still have to 
wait for the multi-instance failover to complete before they become available (message 
availability). 

So, let’s take a look at how that might look if deployed onto Kubernetes. We would deploy two 
separate stateful sets. As before, each stateful set will have a pair of queue managers, one of 
which will become active on startup, and one in warm standby mode. 
586 Accelerating Modernization with Agile Integration



Figure 9-15   Achieving very high service availability

Kubernetes then the sets to worker nodes with sufficient resources, for example, as shown in 
Figure 9-16 on page 588.

9.2.4  Connection distribution

Closely tied to high availability is connection distribution. It doesn’t matter how quickly a 
queue manager is made available if no clients connect to it. We need to consider how the 
clients know what queue managers are available, and how they decide which one to connect 
to, and under what circumstances they should reconnect in order to improve the connection 
distribution.

Techniques have existed for some time to provide IBM MQ clients with a list of queue 
managers. The typical approach is a Client Channel Definition Table (CCDT) which can be 
directly set on the IBM MQ client, or referenced remotely for easier group configuration. This 
ensures that if a connection to a queue manager is broken, the client can try alternative 
queue managers until it finds a working connection. Up until recent versions of IBM MQ, after 
connections are made, they are typically not dynamically redistributed unless a connection 
fails, and so there is no guarantee that workload is well balanced. 

However, a recent advance known as “uniform clusters” (introduced in IBM MQ 9.1.2) takes 
this one step further by enabling intelligent dynamic, workload-based rerouting of applications 
connections to queue managers. This caters for the following scenarios:

� With multiple IBM MQ queue managers, how are application instances evenly distributed 
across IBM MQ instances?

� As the number of IBM MQ queue managers is increased, how can it be assured that 
application instances will be evenly distributed across the IBM MQ instances?

� In planned maintenance or failure situations how can application instances be 
redistributed to the remaining IBM MQ queue managers, and then rebalanced when the 
original queue manager becomes available again?

Kubernetes

g g y

Worker Node (VM)Worker Node (VM)

Multiple multi-instance queue managers in containers
High message availability, very high service availability

Container Container

QM 1a
(active)

QM 1b
(warm

standby)
Persistent 

volume

Stateful
Set 1

Worker Node (VM) Worker Node (VM)

Container Container

QM 2a
(active)

QM 2b
(warm

standby)
Persistent 

volume

Stateful
Set 2
Chapter 9. Field notes on modernization for messaging  587



To configure an IBM MQ uniform cluster a set of equivalent queue managers are deployed, 
linked together into an IBM MQ Cluster and labeled as a uniform cluster. This gives them the 
permission to start to chat among themselves, sharing knowledge of which application 
instances are connected where. With that information, the cluster can start to tackle the 
preceding problems. 

Figure 9-16   Uniform cluster

Figure 9-16 shows queue managers in the uniform cluster that detect an imbalance of 
applications across the individual queue managers. When imbalance occurs, they 
automatically move an application’s connection from one queue manager to another, 
reestablishing a balance. The imbalance detection is continually running, making incremental 
improvements upon the initial balancing and also those times when queue managers are 
being stopped and started due to maintenance and scaling. 

Container environments constantly and dynamically start and stop container replicas based 
on changes in workload, recovery from failures, and in order to roll out updated container 
images. IBM MQ’s uniform cluster technology ensures that client applications continuously 
remain evenly distributed across the available IBM MQ container replicas. 

We delve more into uniform clusters in the 9.3, “IBM MQ scaling” on page 588. 

9.3  IBM MQ scaling

Container technology provides the opportunity to scale deployments by replicating the 
number of active containers. A load-balancing component commonly sits in front of the active 
containers and distributes the work across the available instances. IBM MQ has been proven 
to scale in the most extreme scenarios, this section will look at the common options and how 
these translate to a container environment. 

Traditional horizontal scaling of IBM MQ
Prior to containers, IBM MQ has been repeatedly proven in the most extreme scenarios, by 
the most demanding of users across the world, while providing the highest qualities of 
message service. It ensures that no persistent message data is lost, no matter what the 
problem.

Application

Queue 
Manager

MQ Client

Queue 
Manager

Queue 
Manager

Uniform cluster

Cluster aware client
• Automatic workload distribution
• Automatic error recovery 
• Dynamic re-balancing

Application

MQ Client

Application

MQ Client

Peer cluster communication
• Availability
• Workload
• Connections
588 Accelerating Modernization with Agile Integration



That’s not to say that every IBM MQ system behaves like this, thought around the design and 
how applications use it to maximize the scalability and availability is required. Small 
deployments of IBM MQ in the past commonly focused on a single queue manager approach.

Figure 9-17 shows single IBM MQ instance topology.

Figure 9-17   Single IBM MQ instance topology

With this model steps, you can take steps to make that single queue manager as available as 
physically possible. Perhaps you would use one of IBM MQ’s high availability capabilities, 
such as multi-Instance described in 9.2.2, “Multi-instance queue managers in containers” on 
page 585. This does not avoid those times when the queue manager needs to be restarted or 
reconfigured. At those times, you have an outage as the queue manager fails over, even if 
just for a few seconds.

Continuous availability looks to avoid an outage of the whole messaging system differently, an 
architecture that avoids a single queue manager as the route for all messages. Many clients 
have built continuous available IBM MQ systems to do just that, these use multiple active 
queue managers and distribute the messaging workload across them. And it is not enough 
just to worry about the messaging layer, applications also need to remove any single points of 
failure, so that means multiple active instances of the applications as shown in Figure 9-18 on 
page 590.
Chapter 9. Field notes on modernization for messaging  589



Figure 9-18   Multiple active instances

On z/OS, users will probably be aware of Queue Sharing Groups, and how they help on that 
platform by exposing centrally shared queues through those multiple queue managers. But 
on another platform, where such a capability doesn’t exist, having multiple queue managers 
means multiple copies of the same queue, each with a different set of messages.

For new applications, the multi queue manager pattern really should be the starting point and 
built into the applications expectations from the start. However, adapting existing applications 
to this pattern that have relied on a single queue manager being the target for all their 
messages might require extra work. In fact, it might require application changes if the logic is 
relying on things that are fundamentally counter to highly available solutions, for example 
global ordering of all message data. 

One option to achieve better availability is to create multiple cloned environments, and to 
manually pin application instances across them. See Figure 9-19 on page 590.

Figure 9-19   Applications tightly coupled to queue manager instances
590 Accelerating Modernization with Agile Integration



This means that when a single queue manager stops, only a proportion of the messaging 
stops. This is an improvement on the single queue manager but not such good news for those 
instances of the application that are pinned to the stopped queue manager. It can also 
become a problem to manage these static configurations, constantly needing to reassess 
how they’re configured to ensure they’re still meeting the requirements. 

An even better approach is to decouple the application instances from the individual queue 
managers entirely, allowing them to connect to any of them. This is shown in Figure 9-20 on 
page 591.

Figure 9-20   Decoupled queue managers and applications

This pattern adheres to the principle that messaging workload is distributed across a set of 
queue managers. Also, this loosely coupled pattern also brings in the fundamental 
requirement that applications connect over TCP/IP. Nothing new there, IBM MQ has had 
specific capabilities to help decouple client connections from a specific queue manager, for 
example:

� Client Channel Definition Table (CCDT) queue manager groups to randomize the 
application connections.

� Dynamic CCDT retrieval over HTTP/FTP to ensure that applications always have the 
latest IBM MQ connectivity details.

� Auto reconnect of applications to hide system and network outages from the applications.
� IBM MQ Clustering allows queue managers to be connected into a network and resources 

(such as queues) advertised in the cluster. This reduces the administration overhead of 
IBM MQ networks.

The Uniform Cluster pattern
For the preceding queue manager pattern to succeed, an application needs to treat all those 
queue managers as equivalent. This means that the application can connect to any one of 
them and expect to behave the same, with the same queues, topics, security configuration, 
and so on. Or to put it another way, these queue managers need to be uniform. This is why 
Chapter 9. Field notes on modernization for messaging  591



IBM MQ has introduced a new phrase to its catalog, the Uniform Cluster. In IBM MQ 9.1.2, 
queue managers can be aware that they’re being used for this exact purpose. And this solves 
some of the challenges that users would have had to address:

How do I ensure that my multiple application instances are evenly distributed across those 
queue managers? Also, how do I ensure that every queue manager has at least one 
consuming application for each queue? 

If these questions are left to chance with a CCDT to load balance, there are no guarantee of 
success (Figure 9-21 on page 592).

Figure 9-21   Unbalanced connections with traditional CCDT configuration

If a queue manager is stopped for maintenance, applications can reconnect to a remaining 
queue manager (for example with auto reconnect). But how do applications connect back to 
that stopped queue manager after it is restarted? See Figure 9-22.

Figure 9-22   Maintenance of queue managers

If a configuration change brings in a new queue manager, perhaps to scale up, how does it 
get a fair proportion of connected applications? See Figure 9-23.

Figure 9-23   Scaling out with additional queue managers

To date, the preceding issues have typically been solved either through increased application 
logic, or through manual operations being performed. With the release of IBM MQ 9.1.2 on 
592 Accelerating Modernization with Agile Integration



the distributed platforms (Linux, IBM MQ Appliance, Windows, AIX) the preceding questions 
can be answered with the introduction of Uniform Clusters.

A set of equivalent queue managers is used and linked together in their own IBM MQ Cluster 
and configured to be a Uniform Cluster. This gives them the permission to start to chat among 
themselves, sharing knowledge of which applications are connected where. With that 
information, the cluster can start to tackle the preceding problems. The queue managers in 
the Uniform Cluster detect an imbalance of applications across the individual queue 
managers and automatically move an application’s connection from one queue manager to 
another, reestablishing a balance. This is continually happening, solving that initial balancing 
and also those times when queue managers are being stopped and started due to 
maintenance and scaling. See Figure 9-24 on page 593.

Figure 9-24   Uniform cluster rebalancing

Adopting uniform clusters with containers
As a component is scaled out in a container platform, additional replicas are provided. Load is 
commonly distributed across active replicas by using a load-balancing component, and in 
HTTP scenarios where the connection can be short lived, over time a fair distribution is 
spread across the available instances. 

IBM MQ scenarios can be different where the connection between a client and Queue 
Manager is established and maintained for an extended period of time. These differences are 
often deliberate to improve the performance of the overall solution. This means that the 
standard load-balancing approach for a container environment will not work for load running 
connections, and uniform cluster capability should be used in these scenarios. Each member 
of a uniform cluster needs a unique entry point for applications to directly access the queue 
manager (for example a network address). This is used by the uniform cluster 
client-balancing logic to assure that each queue manager has the correct number of clients 
attached, and complete any re balancing as needed. Therefore no container load-balancing 
component should be placed in front of a uniform cluster. Instead, the IBM MQ client should 
be fully in control of the uniform cluster load balancing. This is illustrated in Figure 9-25. 

Figure 9-25   Uniform cluster within containers
Chapter 9. Field notes on modernization for messaging  593



As discussed, IBM MQ has been repeatedly proven in the most extreme scenarios. And the 
new uniform cluster capability has simplified the administration activities that are required for 
many use cases. Uniform clusters are deliberately designed to work within a container 
environment. With customizations (as mentioned earlier) around the distribution of traffic 
across replicas, uniform clusters can work naturally within containers.

9.4  Automation of IBM MQ provisioning using a DevOps 
pipeline

Customers are adopting a decentralized IBM MQ architecture, which can lead to an increased 
number of IBM MQ instances. Often container orchestration platforms such as Kubernetes 
are used to streamline the monitoring and management. Automating the deployment and 
maintenance of IBM MQ is central to providing the agility required for a modern IBM MQ 
estate. Therefore, a pipeline is critical within an organization.

9.4.1  Design for DevOps pipeline 

The DevOps technology that is used might differ depending on the customer, but the 
high-level approach remains the same. The scenario is that within an organization there are 
many application development teams. Each of these want an individual IBM MQ instance to 
be deployed and any updates to either the configuration of IBM MQ or software level should 
cause a build to occur. 

Typically, the DevOps process is separated into four pipelines:

1. IBM MQ Base Pipeline: this pipeline generates the core base IBM MQ container image 
that is used for the downstream pipelines. In certain instances, this can be omitted as IBM 
MQ Advanced and Cloud Pak for Integration provides a certified container that can be 
used as is. Other clients might want to define their own container image and can use our 
publicly available GitHub repository as a starting point for their own container image. This 
is depicted in Figure 9-26 on page 595. 
594 Accelerating Modernization with Agile Integration



Figure 9-26   IBM MQ Base Pipeline

2. Enterprise Pipeline - enterprises commonly have IBM MQ standards around their 
deployments such as channels, performance characteristics and channel security 
configuration. This configuration should be added to the Base IBM MQ Image and can be 
included by defining MQSC configuration and layer into /etc/mqm. This is depicted in 
Figure 9-27 on page 596:
Chapter 9. Field notes on modernization for messaging  595



Figure 9-27   Enterprise Pipeline

3. Application Pipeline: application teams own their own messaging resources, and the 
pipeline is configured to process any updates. The messaging resources can either be 
written within an MQSC file, or within a simplified structure and pre-processed by the 
pipeline into a valid MQSC file. Typical resources include queues, topics and security 
access configuration. This is depicted here:
596 Accelerating Modernization with Agile Integration



Figure 9-28   Application Pipeline

4. Deploy to environment: After the application IBM MQ image is built, this can be 
deployed to a container orchestration platform. Unless completed in previous stages, 
security information such as TLS certificates will be associated with the deployment. 
Depending on the level of maturity, this may involve these activities:

– Deploying to a central development environment

– Completing automated unit testing against the deployed image

– Deploying to a testing environment

– Complete additional automated release testing (functional, non-functional)

– Deploy to a production environment 

The end to end DevOps pipeline is shown in Figure 9-29 on page 598:
Chapter 9. Field notes on modernization for messaging  597



Figure 9-29   End-to-end pipeline flow

The key aspect to highlight is that each of the pipelines are triggered based on changes in the 
preceding layers, and the associated GitHub repositories. This allows any changes to ripple 
through the pipeline layers and generate new images for all the associated applications.

9.4.2  Building a sample IBM MQ pipeline

This section will explain how an end to end pipeline flow can be created by using freely 
available tooling on a fresh installation of Ubuntu. It was deliberately decided to use an 
Ubuntu image instead of a complete Cloud Pak for Integration installation to allow developers 
to reproduce on their own laptops. The steps required to prepare the Ubuntu image have 
been included for completeness. 
598 Accelerating Modernization with Agile Integration



Prepare the Ubuntu image
These instructions have been developed in a freshly installed image of Ubuntu 16.04, with 
Docker Community Edition, and Jenkins for the automation. A similar process can be 
completed on other Linux releases, but any adaptation of these instructions is an exercise 
that is left up to the reader.

Install docker
Perform the following steps to install docker:

1. Log in to the Ubuntu image and open a terminal window. Ensure that the system is up to 
date by running,

sudo apt-get update

2. Install the tools and repository for Docker to be installed:

sudo apt-get install apt-transport-https ca-certificates curl 
software-properties-common

sudo curl -fssl https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add 
-

sudo add-apt-repository "deb [arch=amd64] 
https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

3. Install Docker by using the following commands:

sudo apt-get update

sudo apt-get install docker-ce

4. Create a user for Jenkins to use, and configure access to run Docker by using the 
following commands:

sudo adduser jenkins

sudo usermod -aG docker jenkins

sudo usermod -aG docker <primaryUser>

where the <primaryUser> is the user that you are currently using,

sudo systemctl restart docker

Install the dependences for the Jenkins and the IBM MQ Container build
Perform the following steps, while still logged in to Ubuntu:

1. Install Git by using the following command:

sudo apt-get install git-core

2. The Jenkins agent requires a JRE to be installed to orchestrate the pipeline. Run the 
following command:

sudo apt-get install default-jre

3. GNU Make is used by the IBM MQ build process. This can be installed by running the 
following command:

sudo apt install gcc

4. Install and start ssh by running the following commands:

sudo apt-get install openssh-server

Starting Jenkins
Perform the following steps to start Jenkins:
Chapter 9. Field notes on modernization for messaging  599



1. Jenkins provides a docker container that simplifies the configuration and setup. This will 
be used during this exercise. Start the container by running the following command:

docker run -p 8080:8080 -p 50000:50000 -v jenkins_home:/var/jenkins_home 
jenkins/jenkins:lts

2. Open a web browser and navigate to http://localhost:8080 this will request an initial 
password, run the following command to display the password:

sudo cat 
/var/lib/docker/volumes/jenkins_home/_data/secrets/initialAdminPassword

3. Paste the password into the console and click Continue: See Figure 9-30 on page 601.

Important: When you run the preceding command, you might see the following error:

docker run -p 8080:8080 -p 50000:50000 -v jenkins_home:/var/jenkins_home 
jenkins/jenkins:lts

docker: Got permission denied while trying to connect to the Docker daemon 
socket at unix:///var/run/docker.sock: Post 
http://%2Fvar%2Frun%2Fdocker.sock/v1.40/containers/create: dial unix 
/var/run/docker.sock: connect: permission denied.

See 'docker run --help'.

This can occur for several reasons including these:

� The user has not been added to the docker group, as specified in the Install docker 
section.

� Docker has not been restarted as specified in the Install docker section.
� The terminal needs to be refresh, use ssh <user>@localhost, and reattempt the 

command. 
600 Accelerating Modernization with Agile Integration



Figure 9-30   Unlock Jenkins

4. The available installation options will be shown (Figure 9-31). Select the Install 
suggested plugins option as shown in Figure 9-31.

Figure 9-31   Set up Jenkins with the standard plugins
Chapter 9. Field notes on modernization for messaging  601



5. Jenkins installs the plugins, and after completion, requires the definition of a new admin 
user. Fill in the following details:
– Username: admin
– Password: Passw0rd!
– Confirm Password: Passw0rd!
– Full name: Administrator
– E-mail address: admin@admin.com

Click Save and Continue. See Figure 9-32.

Figure 9-32   Create first admin user

6. On the final configuration screen click Save and Finish.
7. Jenkins is ready to use, click Start using Jenkins.

Configuring Jenkins to use the host machine for build
Jenkins can be configured with agents that are used to run the pipelines. It is likely that in 
customer build environments, separate node machines would be used. For this exercise the 
host machine (Ubuntu) will be used as the prerequisites have been installed. To use, the host 
machine it needs to be configured, and this is referred to as configuring an agent.

1. Select Jenkins → Manage Jenkins → Manage Nodes:
602 Accelerating Modernization with Agile Integration



Figure 9-33   Manage nodes

2. Click New Node:

Figure 9-34   New Node

3. In the Node name field type HostMachine, select the Permanent Agent checkbox and 
click OK. See Figure 9-35 on page 604.
Chapter 9. Field notes on modernization for messaging  603



Figure 9-35   Specify node name of the agent

4. Fill in the following details as shown in Figure 9-36:

– Remote root directory: /home/jenkins

– Labels: HostMachine

– Host: <Host IP Address> in our case this was 192.168.246.200

Figure 9-36   Basic configuration of Node Agent

5. New credentials need to be configured to connecting to the host machine. Click on the 
Add drop-down that is associated with the Credentials field, and select Jenkins: 
604 Accelerating Modernization with Agile Integration



Figure 9-37   Add credentials for host machine

6. Fill in the credentials for the Jenkins user that was created in the previous steps. See 
Figure 9-38.

Figure 9-38   Jenkins user details

7. Within the original configuration page complete the following additional configuration 
(Figure 9-39 on page 606):

– Credentials: jenkins/***** 

– Host Key Verification Strategy: Non verifying Verification Strategy

Click Save. 
Chapter 9. Field notes on modernization for messaging  605



Figure 9-39   Finalize configuration of host

The Nodes table should be updated with the HostMachine and shown as In sync. See 
Figure 9-40.

Figure 9-40   Host machine in sync

This completes the configuration of the agent.

Configure the base IBM MQ pipeline
This section will build the first pipeline for building the base IBM MQ container image. The 
public IBM MQ container GitHub repository will be used.

1. Select Jenkins → New Item. See Figure 9-41 on page 607.
606 Accelerating Modernization with Agile Integration



Figure 9-41   Create new item in Jenkins

2. Enter BaseMQPipeline as the name, select Freestyle project and click OK:

Figure 9-42   Creating base MQ pipeline

3. Within the general section select these options:
– GitHub project: https://github.com/ibm-messaging/mq-container
– Restrict where this project can be run: HostMachine 

See Figure 9-43 on page 608.
Chapter 9. Field notes on modernization for messaging  607



Figure 9-43   Configure the general properties

4. Within the Source Code Management section fill in the following details:
– Select Git
– Repository URL: https://github.com/ibm-messaging/mq-container
– Branches to build: 9.1.3

Important: The preceding example references the 9.1.3 branch, because it is 
recommended that master NOT be used. Over time, it is expected that the 9.1.3 branch 
will be removed. For information on the available branches, see the following repository:
https://github.com/ibm-messaging/mq-container/branches 
608 Accelerating Modernization with Agile Integration

https://github.com/ibm-messaging/mq-container/branches


Figure 9-44   Configure the source code management

5. Within the Built Environment section select the Delete workspace before build starts 
as shown in Figure 9-45.

Figure 9-45   Configure the workspace to be removed before building

6. Within the Build section click Add build step and select Execute shell. See Figure 9-46.

Figure 9-46   Create a new Execute shell

7. Copy the following lines into the shell box:

make build-devserver

docker tag mqadvanced-server-dev:9.1.3.0-amd64 mqdev-server:latest
Chapter 9. Field notes on modernization for messaging  609



8. Click Save to complete the configuration. 
9. Click Build Now to verify that the pipeline successfully works. See Figure 9-47.

Figure 9-47   Test the build for base MQ pipeline

After the build is complete, click the build name, and select the Console Output to 
confirm that this is correct. 

Configure the enterprise pipeline
This section will build the second pipeline for building the enterprise IBM MQ container 
image. To simulate an enterprise configuration a GitHub repository has been created here,
(https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Int
egration 
with the content in /chapter9/MyOrgMQContainer/. This content is used here:

1. Select Jenkins → New Item. See Figure 9-48 on page 610.

Figure 9-48   Create new item in Jenkins

2. Enter Enterprise Pipeline as the name, select Freestyle project and click OK. See 
Figure 9-49.

Important: The preceding are the current build commands for IBM MQ 9.1.3. These steps 
regularly change. If you are building a different level, you find up-to-date information here: 
https://github.com/ibm-messaging/mq-container/blob/master/docs/building.md

Important: The build process includes the ability to download the IBM MQ Developer 
edition. Depending on the network connection this can cause the build to take minutes to 
complete. There is an option to download and copy into the build directory. For example, 
you can include the following lines in the shell script:

mkdir downloads
cp /home/student/Downloads/mqadv_dev913_linux_x86-64.tar.gz downloads
610 Accelerating Modernization with Agile Integration

https://github.com/ibm-messaging/mq-container/blob/master/docs/building.md
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration


Figure 9-49   Creating Enterprise Pipeline

3. Within the general section as shown in Figure 9-50 on page 612 select these options:
– GitHub project: 

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agil
e-Integration

– Restrict where this project can be run: HostMachine
Chapter 9. Field notes on modernization for messaging  611



Figure 9-50   Configure the general properties

4. Within the Source Code Management section fill in the following details (Figure 9-51):
– Select Git
– Repository URL: 

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agil
e-Integration

Figure 9-51   Configure the source code management
612 Accelerating Modernization with Agile Integration



5. Within the Build Triggers section, click Build after other projects are built and enter 
BaseMQPipeline. See Figure 9-52.

Figure 9-52   Trigger based on base IBM MQ pipeline

6. Within the Built Environment section as shown in Figure 9-53 select the Delete 
workspace before build starts:

Figure 9-53   Configure the workspace to be removed before building

7. Within the Build section click Add build step and select Execute shell:

Figure 9-54   Create a new Execute shell

8. Copy the following lines into the shell box:

cd chapte9/MyOrgMQContainer

docker build --tag myorg-mq:${BUILD_NUMBER} .

docker tag myorg-mq:${BUILD_NUMBER} myorg-mq:latest

9. Click Save to complete the configuration. 
10.Click Build Now to verify that the pipeline successfully works. After the build is complete, 

click the build name, and select the Console Output to verify. 
Chapter 9. Field notes on modernization for messaging  613



Configure the Application Pipeline
This section will build the final pipeline corresponding to an applications IBM MQ instance. 
Similar to the previous pipeline a GitHub repository has been created for illustration. 

1. Select Jenkins → New Item. See Figure 9-55.

Figure 9-55   Create new item in Jenkins

2. Enter ApplicationPipeline as the name, select Freestyle project and click OK. See 
Figure 9-56.

Figure 9-56   Creating base IBM MQ pipeline

3. Within the general section, select (Figure 9-57) these options:
614 Accelerating Modernization with Agile Integration



– GitHub project: 
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agil
e-Integration

– Restrict where this project can be run: HostMachine

Figure 9-57   Configure the general properties

4. Within the Source Code Management section fill in the following details (Figure 9-58):
– Select Git
– Repository URL: 

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agil
e-Integration

Figure 9-58   Configure the source code management

5. Within the Build Triggers section, click Build after other projects are built and type 
EnterprisePipeline (Figure 9-59 on page 616):
Chapter 9. Field notes on modernization for messaging  615



Figure 9-59   Triggering the pipeline from the previous

6. In the Built Environment section, select the Delete workspace before build starts 
(Figure 9-60):

Figure 9-60   Configure the workspace to be removed before building

7. Within the Build section click Add build step and select Execute shell (Figure 9-61):

Figure 9-61   Create a new Execute shell

8. Copy the following lines into the shell box:

cd /chapte9/Dev1Team

docker build --tag app1-mq:${BUILD_NUMBER} .

docker tag app1-mq:${BUILD_NUMBER} app1-mq:latest

9. Click Save to complete the configuration. 
10.Click Build Now to verify that the pipeline successfully works. After the build is complete, 

click the build name, and select the Console Output to verify. 

Verification of the build process
After all the pipelines have been created this can be verified by starting the BasePipeline, 
which will trigger the next pipeline automatically until an application container is built. 
616 Accelerating Modernization with Agile Integration



1. Return to the Jenkins dashboard and kick-off a new build for the BaseMQPipeline as 
shown in Figure 9-62.

Figure 9-62   Verify the entire pipeline 

2. After the build has completed, the Last Success time should have been updated. See 
Figure 9-63.

Figure 9-63   Updated build of the entire pipeline

3. The latest created container image will now be started, run the following command from a 
new terminal to start the queue manager:

docker run --env LICENSE=accept --env MQ_DEV=false --env MQ_QMGR_NAME=QM1 
--publish 1414:1414 --publish 9443:9443 --detach app1-mq:latest

Refer to the IBM MQ container documentation here: 
https://github.com/ibm-messaging/mq-container/blob/master/docs/usage.md for the 
documentation on the parameters. 

4. The preceding command will start the container. To view the running containers, run the 
following command as shown in Figure 9-64. 

docker ps

Figure 9-64   List the running containers

5. To verify the behavior of the container a message will be sent and received. An easy 
mechanism to accomplish this is to use sample IBM MQ utilities shipped with the product. 
Therefore, exec into the container image by using the Container ID from your output as 
follows:

docker exec -it <CONTAINER_ID> /bin/bash
Chapter 9. Field notes on modernization for messaging  617

https://github.com/ibm-messaging/mq-container/blob/master/docs/usage.md


For example, docker exec -it de147873566b /bin/bash

6. As part of the build a single queue that is called MyApp.IN was created. The IBM MQ 
samples will be used to send and receive a message, run the following commands 
(Figure 9-65 on page 618):
/opt/mqm/samp/bin/amqsput MyApp.IN
/opt/mqm/samp/bin/amqsget MyApp.IN

Figure 9-65   Send and receive a message

The preceding verification could be built into the pipeline, so this is automated and would 
avoid any manual interaction. 

Important: This example pipeline built an IBM MQ queue manager without securing the 
channels with TLS. Configuring the channel with TLS would be set in the IBM MQ 
configuration via MQSC and stored in /etc/mqm.

In addition to setting the channel to use TLS the IBM MQ queue manager would also need 
to have access to the TLS certificates and keystore. This could be achieved by storing the 
certificates in locations such as the following examples: a separate filesystem, a cloud key 
vault mounted into the container at startup, a series of Kubernetes secrets, or even in the 
container image. 

The directory locations and certificate types are documented in the IBM MQ container 
repository here: 
https://github.com/ibm-messaging/mq-container/blob/master/docs/usage.md#supplyi
ng-tls-certificates 
618 Accelerating Modernization with Agile Integration

https://github.com/ibm-messaging/mq-container/blob/master/docs/usage.md#supplying-tls-certificates
https://github.com/ibm-messaging/mq-container/blob/master/docs/usage.md#supplying-tls-certificates


Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet as described 
in the following sections. 

Locating the GitHub material

The web material that is associated with this book is available in softcopy on the internet from 
the IBM Redbooks GitHub location: 
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Inte
gration.

Cloning the GitHub material

Complete the following steps to clone the GitHub repository for this book:

1. Download and install Git client if not installed from this web page.

2. Run the following command to clone the GitHub repository:

git clone 
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-I
ntegration.git.

A

© Copyright IBM Corp. 2020. All rights reserved. 619

https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration
https://github.com/IBMRedbooks/SG248452-Accelerating-Modernization-with-Agile-Integration
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads


620 Accelerating Modernization with Agile Integration



Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this 
document. Note that some publications referenced in this list might be available in softcopy 
only. 

� An Architectural and Practical Guide to IBM Hybrid Integration Platform, SG24-8351

� IBM Cloud Private Application Developer’s Guide. SG248441

� IBM Z Integration Guide for Hybrid Cloud and the API Economy, REDP5319

You can search for, view, download or order these documents and other Redbooks, 
Redpapers, Web Docs, draft and additional materials, at the following website: 

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IBM Cloud Pak for Integration Knowledge Center:

https://www.ibm.com/support/knowledgecenter/en/SSGT7J/overview.html

� Agile integration page:

https://www.ibm.com/cloud/integration/agile-integration 

� Agile integration eBooklet:

http://ibm.biz/agile-integration-ebook

� API management blog: 

https://developer.ibm.com/apiconnect/blog  

� Application integration blog:

https://developer.ibm.com/integration/blog  

� Messaging and events blog: 

https://developer.ibm.com/messaging/blog 

� Microservices architecture:

http://ibm.biz/MicroservicesVsSoa 

� Cattle not pets approach: 

http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle 

� ESB patterns:

http://ibm.biz/FateOfTheESBPaper 
© Copyright IBM Corp. 2020. All rights reserved. 621

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://ibm.biz/MicroservicesVsSoa
https://www.ibm.com/cloud/integration/agile-integration
https://developer.ibm.com/apiconnect/blog
https://developer.ibm.com/integration/blog
https://developer.ibm.com/messaging/blog
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle
http://ibm.biz/FateOfTheESBPaper
https://www.ibm.com/support/knowledgecenter/en/SSGT7J/overview.html
http://ibm.biz/agile-integration-ebook


� API Connect webcast: 

https://developer.ibm.com/apiconnect/2018/12/10/api-management-centralized-or-d
ecentralized 

� IBM developer works article on whether an enterprise might look to replace EDI with APIs:

https://developer.ibm.com/apiconnect/2018/06/25/should-business-apis-replace-ed
i/

� EDI standards within IBM App Connect: 

https://github.com/ot4i/dfdl-edifact-tutorial 

� Hybrid Cloud: Multiple deployment modes:

https://www.ibm.com/blogs/cloud-computing/2018/10/24/what-is-multicloud 

� Microservices, SOA, and APIs: Friends or enemies?:

https://developer.ibm.com/tv/microservices-frenemies

� The hybrid integration reference architecture:

http://ibm.biz/HybridIntRefArch

� How to write applications with a cloud-native intent (12factor):

https://www.12factor.net/

� cloud-native approach (Netflix example):

https://www.cloudcomputing-news.net/news/2017/aug/11/netflix-exemplar-blueprint
-cloud-native-computing

� Continuous Adoption:

https://ibm.biz/ContinuousAdoption

� Kubernetes website:

https://kubernetes.io/

� Ceph Block documentation:

https://docs.ceph.com/docs/master/

� Benefits of containers:

https://developer.ibm.com/series/benefits-of-containers

� A/B testing and canary rollouts- martinFowler.com:

https://martinfowler.com/bliki/CanaryRelease.html

� CircuitBreaker- martinFowler.com::

https://martinfowler.com/bliki/CircuitBreaker.html

� Michael Elder’s regrouped version of 12factors:

https://medium.com/ibm-cloud/kubernetes-12-factor-apps-555a9a308caf 

� The Practical Test Pyramid by Martin Fowlers:

https://martinfowler.com/bliki/TestPyramid.html

� How to build a proper helm chart for IBM Cloud Private environments:

(https://github.com/IBM/charts/blob/master/GUIDELINES.md#developing-helm-charts
-for-ibm-cloud-private)

� Considerations for naming JDBC Providers policy - Knowledge Center link::

https://www.ibm.com/support/knowledgecenter/en/SSTTDS_11.0.0/com.ibm.etools.mft
.doc/ah61310_.htm
622 Accelerating Modernization with Agile Integration

https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://martinfowler.com/bliki/TestPyramid.html
https://github.com/IBM/charts/blob/master/GUIDELINES.md#developing-helm-charts-for-ibm-cloud-private
https://www.ibm.com/support/knowledgecenter/en/SSTTDS_11.0.0/com.ibm.etools.mft.doc/ah61310_.htm
https://www.ibm.com/support/knowledgecenter/en/SSTTDS_11.0.0/com.ibm.etools.mft.doc/ah61310_.htm
https://developer.ibm.com/messaging/blog
https://developer.ibm.com/apiconnect/2018/12/10/api-management-centralized-or-decentralized
https://developer.ibm.com/apiconnect/2018/12/10/api-management-centralized-or-decentralized
https://developer.ibm.com/apiconnect/2018/06/25/should-business-apis-replace-edi/
https://developer.ibm.com/apiconnect/2018/06/25/should-business-apis-replace-edi/
https://github.com/ot4i/dfdl-edifact-tutorial
http://ibm.biz/HybridIntRefArch
http://ibm.biz/agile-integration-links
http://ibm.biz/HybridIntRefArch
http://ibm.biz/FateOfTheESBPaper
http://ibm.biz/HybridIntRefArch
http://ibm.biz/HybridIntRefArch
https://www.cloudcomputing-news.net/news/2017/aug/11/netflix-exemplar-blueprint-cloud-native-computing/
https://www.12factor.net/
http://ibm.biz/HybridIntRefArch
https://ibm.biz/ContinuousAdoption
https://ibm.biz/ContinuousAdoption
http://ibm.biz/HybridIntRefArch
https://ibm.biz/ContinuousAdoption
https://kubernetes.io/
https://docs.ceph.com/docs/master/
https://kubernetes.io/


� Sample IBM App Connect docker image:

https://github.com/ot4i/ace-docker/

� Base code of the helm package for IBM App Connect from GitHub:

https://github.com/ot4i/ace-helm

� Push REST APIs to API Connect - Knowledge Center link::

https://www.ibm.com/support/knowledgecenter/SSTTDS_11.0.0/com.ibm.etools.mft.do
c/bn28905_.htm 

� Configuring a JDBC type 4 connection for globally coordinated transactions - Knowledge 
Center link::

https://www.ibm.com/support/knowledgecenter/SSTTDS_11.0.0/com.ibm.etools.mft.do
c/ah61330_.htm

� urlopen module - Knowledge Center link::

https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.7.0/com.ibm.dp.doc/urlopen
_js.html#urlopen.targetformq)

� Messaging using the REST API - Knowledge Center link:

(https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.dev.doc
/q130940_.htm

� How to secure an API by using OAuth 2.0 - Knowledge Center link:

https://www.ibm.com/support/knowledgecenter/en/SSFS6T/com.ibm.apic.toolkit.doc/
tutorial_apionprem_security_OAuth.html

� AAA information files - - Knowledge Center link:

https://www.ibm.com/support/knowledgecenter/en/SS9H2Y_7.5.0/com.ibm.dp.doc/aaa_
aaainfofile_contents.html

� How to use IBM App Connect with Salesforce:

(https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/
use-ibm-app-connect-salesforce/

� How to use IBM App Connect with Gmail:

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-gmail/

� How to use IBM App Connect with Slack:

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-slack/

� MQ on Cloud tutorial:

https://www.ibm.com/cloud/garage/dte/tutorial/tutorial-mq-ibm-cloud.

� Batch processing tutorial:

https://developer.ibm.com/integration/blog/2018/03/16/introducing-batch-process
ing-in-ibm-app-connect/

� How to use IBM App Connect with Salesforce:

(https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/
use-ibm-app-connect-salesforce/

� How to use IBM App Connect with ServiceNow:

https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/u
se-ibm-app-connect-servicenow/
 Related publications 623

https://github.com/ot4i/ace-helm
https://www.ibm.com/support/knowledgecenter/SSTTDS_11.0.0/com.ibm.etools.mft.doc/bn28905_.htm
https://www.ibm.com/support/knowledgecenter/SSTTDS_11.0.0/com.ibm.etools.mft.doc/bn28905_.htm
https://www.ibm.com/support/knowledgecenter/en/SSGT7J/overview.html
https://www.ibm.com/support/knowledgecenter/en/SSGT7J/overview.html
https://martinfowler.com/bliki/TestPyramid.html
https://www.ibm.com/support/knowledgecenter/en/SSFS6T/com.ibm.apic.toolkit.doc/tutorial_apionprem_security_OAuth.html
https://www.ibm.com/support/knowledgecenter/en/SS9H2Y_7.5.0/com.ibm.dp.doc/aaa_aaainfofile_contents.html
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-salesforce/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-salesforce/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-gmail/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-gmail/
https://www.ibm.com/cloud/garage/dte/tutorial/tutorial-mq-ibm-cloud
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-slack/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-slack/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-salesforce/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-salesforce/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-servicenow/
https://developer.ibm.com/integration/docs/app-connect/how-to-guides-for-apps/use-ibm-app-connect-servicenow/


� IBM Cloudant Database scenario helm chart:

(https://github.com/maxgfr/ibm-cloudant

� Salesforce Account and Asset object relationship:

https://trailhead.salesforce.com/en/content/learn/modules/field_service_maint/f
ield_service_maint_assets.

� IBM Cloud catalog:

(https://cloud.ibm.com/catalog

� Cloudant documentation:

https://cloud.ibm.com/docs/services/Cloudant?topic=cloudant-databases

� IBM API Connect Test and Monitor:

https://ibm.biz/apitest

� Open source LoopBack framework:

https://loopback.io/doc/en/lb4/Getting-started.html

� IBM Aspera free trial link:

https://www.ibm.com/cloud/aspera

� Slack free trial link::

https://slack.com

� Organization, Catalogue and Space responsibilities for APIs:

https://developer.ibm.com/apiconnect/2019/07/18/organizingteamsinapic/

� Kubernetes documentation:

https://kubernetes.io/docs/home/

� API Connect 2018 Whitepaper:

https://www.ibm.com/downloads/cas/30YERA2R

� IBM API Connect Version 2018 documentation:

https://www.ibm.com/support/knowledgecenter/en/SSMNED_2018/mapfiles/getting_sta
rted.html

� Service meshes and API management:

� https://developer.ibm.com/apiconnect/2018/11/13/service-mesh-vs-api-management/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
624 Accelerating Modernization with Agile Integration

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://github.com/maxgfr/ibm-cloudant
https://cloud.ibm.com/catalog
https://cloud.ibm.com/docs/services/Cloudant?topic=cloudant-databases
https://www.ibm.com/support/knowledgecenter/en/SSGT7J/overview.html
https://loopback.io/doc/en/lb4/Getting-started.html)
https://www.ibm.com/cloud/aspera
https://slack.com
https://slack.com
https://developer.ibm.com/apiconnect/2019/07/18/organizingteamsinapic/
https://slack.com
https://slack.com
https://kubernetes.io/docs/home/
https://www.ibm.com/support/knowledgecenter/en/SSGT7J/overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_2018/mapfiles/getting_started.htm
https://www.ibm.com/support/knowledgecenter/en/SSMNED_2018/mapfiles/getting_started.htm


IS
B

N
 0738458368

S
G

24-8452-00

IS
B

N
 0738458368

S
G

24-8452-00

IS
B

N
 0738458368

S
G

24-8452-00

(0.1”spine)
0.1”<

->
0.169”

53<
->

89 pages

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Accelerating M
odernization w

ith Agile Integration

Accelerating M
odernization w

ith 
Agile Integration

Accelerating M
odernization 

w
ith Agile Integration

Accelerating M
odernization w

ith Agile Integration



IS
B

N
 0738458368

S
G

24-8452-00

IS
B

N
 0738458368

S
G

24-8452-00

(2.0” spine)
2.0” <

->
 2.498”

1052 <
->

 1314 pages

(2.5” spine) 
2.5”<

->
nnn.n” 

1315<
->

 nnnn pages

Accelerating 
M

odernization w
ith Agile 

Accelerating M
odernization w

ith 
Agile Integration
Agile Integration Architecture 





ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738458368

SG24-8452-00

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 Integration has changed
	1.2 Audience and scope
	1.3 Navigating the book

	Chapter 2. Agile integration
	2.1 Agile integration: A brief introduction
	2.1.1 People: Decentralized integration ownership
	2.1.2 Architecture: Delivery focused integration architecture
	2.1.3 Infrastructure aspect: Cloud-portable integration infrastructure

	2.2 The journey so far: SOA, ESBs, and APIs
	2.2.1 The forming of the ESB pattern
	2.2.2 What went wrong for the centralized ESB pattern
	2.2.3 The API economy

	2.3 Microservices
	2.3.1 The rise of lightweight run times
	2.3.2 Microservices architecture: A more agile and scalable way to build applications
	2.3.3 Comparing SOA and the microservices architecture
	2.3.4 Bi-modal IT and decentralization
	2.3.5 Decentralization and integration versus point-to-point

	2.4 The three aspects of agile integration
	2.5 People: Decentralized integration ownership
	2.5.1 Moving to a decentralized and business-focused team structure
	2.5.2 Big bangs generally lead to big disasters
	2.5.3 Decentralized integration ownership and decentralized infrastructures
	2.5.4 Prioritizing project delivery first
	2.5.5 Evolving the role of the architect
	2.5.6 Automation: The key to consistency in decentralization
	2.5.7 Producing multi-skilled developers
	2.5.8 Conclusions on decentralized integration ownership

	2.6 Architecture: Delivery-focused architecture
	2.6.1 Consumer-centric API management
	2.6.2 Fine-grained application integration
	2.6.3 Application-owned messaging and events
	2.6.4 Conclusions on delivery-focused architecture

	2.7 Technology: Cloud-native infrastructure
	2.7.1 Virtual machines, containers, and serverless
	2.7.2 Cloud-native approach
	2.7.3 Portability: Public, private, and multicloud
	2.7.4 Conclusion on cloud-native integration infrastructure


	Chapter 3. Agile integration: Capability perspectives
	3.1 Capability perspective: API management
	3.1.1 A brief history of API management
	3.1.2 Cloud-native infrastructure

	3.2 Capability perspective: Application integration
	3.2.1 Moving to a cloud-native approach
	3.2.2 Fine-grained deployment: Breaking up the ESB
	3.2.3 Grouping integrations
	3.2.4 Stateless components
	3.2.5 Image-based deployment
	3.2.6 Elastic, agnostic infrastructure and container orchestration platforms
	3.2.7 Lightweight run times: How the modern integration run time has changed
	3.2.8 Log-based monitoring
	3.2.9 API intra-application communication
	3.2.10 Event-driven architecture
	3.2.11 Agile methods
	3.2.12 Continuous Integration and Continuous Delivery and Deployment
	3.2.13 DevOps
	3.2.14 Creating integrations is becoming easier
	3.2.15 Decentralizing integration ownership
	3.2.16 Using integration run times in a microservices application

	3.3 Capability perspective: Messaging and event streams
	3.3.1 A brief history of asynchronous communication
	3.3.2 Introducing messaging and event streams concepts
	3.3.3 Differentiating capabilities
	3.3.4 A detailed look at messaging
	3.3.5 A detailed look at event streams

	3.4 Capability perspective: Files and Business-to-Business
	3.5 Hybrid and multicloud considerations
	3.5.1 Multicloud: Multiple cloud services
	3.5.2 Hybrid Cloud: Multiple deployment modes (public, private, and legacy)
	3.5.3 Evolution of API deployment modes

	3.6 Use cases driving hybrid and multicloud adoption
	3.6.1 Multicloud strategy
	3.6.2 Cloud bursting and scalability
	3.6.3 Disaster recovery
	3.6.4 Application affinity
	3.6.5 Regional flexibility
	3.6.6 Geographical high availability

	3.7 References

	Chapter 4. Cloud-native concepts and technology
	4.1 Defining cloud-native
	4.2 Key elements of cloud-native applications
	4.2.1 Modular components
	4.2.2 Preferring stateless
	4.2.3 Immutable deployment
	4.2.4 Elastic, agnostic infrastructure and container orchestration platforms
	4.2.5 Lightweight run times
	4.2.6 Log-based monitoring
	4.2.7 API-led intra-application communication
	4.2.8 The reprise of event-driven architecture
	4.2.9 Agile methods
	4.2.10 Continuous Integration and Continuous Delivery and Deployment
	4.2.11 Continuous Adoption
	4.2.12 DevOps

	4.3 Twelve-factor apps
	4.3.1 Conclusion on 12-factor apps

	4.4 Container technology: the current state of the art
	4.4.1 Containers
	4.4.2 Container orchestration
	4.4.3 Kubernetes primer

	4.5 Cloud-native is not for everyone, nor for everything
	4.6 Realizing the true benefits of containerization
	4.7 Application boundaries in a container-based world
	4.7.1 Implicit and explicit boundaries
	4.7.2 Why do application boundaries matter?
	4.7.3 How should we choose the application boundaries?

	4.8 Service mesh
	4.8.1 Role of a service mesh
	4.8.2 Service meshes and API management

	4.9 Cloud-native security – an application-centric perspective
	4.9.1 Scope of this section
	4.9.2 Limitations of traditional security models
	4.9.3 Challenges unique to cloud-native
	4.9.4 Securing a cloud-native application
	4.9.5 Hybrid solutions: Securing cloud to cloud and cloud to ground

	4.10 The future of cloud-native
	4.10.1 Are software-as-a-service applications serverless?
	4.10.2 Function-as-a-service: a more accurate term for serverless?
	4.10.3 Could any runtime be provided in a FaaS model?
	4.10.4 FaaS for cloud-native?
	4.10.5 Are there downsides to FaaS?
	4.10.6 Conclusions on FaaS


	Chapter 5. IBM Cloud Pak for Integration
	5.1 IBM Cloud Pak for Integration
	5.1.1 One platform supported by common services
	5.1.2 IBM Cloud Pak for Integration - benefits
	5.1.3 License flexibility for other non-containerized architectures
	5.1.4 Getting access to IBM Cloud Pak for Integration for the exercises

	5.2 Red Hat OpenShift Container Platform
	5.3 API Lifecycle: IBM API Connect
	5.3.1 Key phases of the API Lifecycle
	5.3.2 API Lifecycle components
	5.3.3 API lifecycle in combination with other capabilities
	5.3.4 Product deployment options

	5.4 Integration security: IBM DataPower Gateway
	5.4.1 Security Gateway
	5.4.2 API Gateway
	5.4.3 DataPower and agile integration

	5.5 Application integration: IBM App Connect
	5.5.1 User-aligned integration tooling
	5.5.2 No-code RESTful integration services
	5.5.3 Flexible integration patterns
	5.5.4 Broad deployment options
	5.5.5 Extended connectivity
	5.5.6 Situational awareness with insightful and actionable notifications
	5.5.7 Quick utilization of artificial intelligence (AI) services
	5.5.8 Rapid visual orchestration of data and systems for API-driven architectures
	5.5.9 Lightweight integration runtime for cloud native deployment
	5.5.10 Grown from a trusted market leading product
	5.5.11 IBM App Connect on deployment options

	5.6 Enterprise Messaging: IBM MQ
	5.7 Event Streaming: IBM Event Streams
	5.8 High-Speed File Transfer: IBM Aspera
	5.8.1 Fast, Adaptive and Secure Protocol (FASP) technology
	5.8.2 Aspera on Cloud

	5.9 Service Mesh: Istio

	Chapter 6. Practical agile integration
	6.1 Introduction
	6.2 Application Integration to front a data store with a basic API
	6.2.1 Db2 setup
	6.2.2 Db2 table setup
	6.2.3 Swagger definitions

	6.3 Expose an API using API Management
	6.3.1 Importing the API definition
	6.3.2 Configuring the API
	6.3.3 Merging two application flows into a single API
	6.3.4 Add simple security to the API

	6.4 Messaging for reliable asynchronous data update commands
	6.4.1 Enable create, update, delete via commands
	6.4.2 Deploy and configure Queue Manager
	6.4.3 Queue manager configuration
	6.4.4 DB commands implementation
	6.4.5 Graphical data maps implementation
	6.4.6 Policy definitions
	6.4.7 BAR file creation
	6.4.8 Override policies for environment specific values
	6.4.9 Global transaction coordination considerations
	6.4.10 Conclusion

	6.5 Consolidate the new IBM MQ based command pattern into the API
	6.5.1 Defining the API data model
	6.5.2 Paths
	6.5.3 Securing the API
	6.5.4 The Assembly
	6.5.5 API testing
	6.5.6 API socialization
	6.5.7 Conclusion

	6.6 Advanced API security
	6.6.1 Import the API into IBM API Connect
	6.6.2 Configure the API
	6.6.3 Add basic security to the API
	6.6.4 Test the API
	6.6.5 Securing the API Using OAUTH
	6.6.6 External client testing

	6.7 Create event stream from messaging
	6.7.1 Creating a new event stream topic
	6.7.2 Running the IBM MQ source connector
	6.7.3 Configuring the connector to connect to IBM MQ

	6.8 Perform event-driven SaaS integration
	6.8.1 Scenario
	6.8.2 IBM App Connect event-driven flow to Salesforce, Google and Slack SaaS applications
	6.8.3 Prerequisites
	6.8.4 Create flows
	6.8.5 Test your flow
	6.8.6 Conclusion

	6.9 Implementing a simple hybrid API
	6.9.1 Business scenario
	6.9.2 Invoking existing APIs from IBM App Connect Designer
	6.9.3 Solution overview
	6.9.4 Preparing the external SaaS applications
	6.9.5 Create simulated on-premises API flow
	6.9.6 Create Hybrid API
	6.9.7 Test the flows
	6.9.8 First, test the simulated on-premises API
	6.9.9 Final Hybrid API integrated testing
	6.9.10 Conclusion

	6.10 Implement event sourced APIs
	6.10.1 Implementing the query side of the CQRS pattern
	6.10.2 Event sourced programming - a practical example
	6.10.3 How to do it?
	6.10.4 Creating the flow in IBM App Connect
	6.10.5 Mapping the received events to the output required
	6.10.6 Sending the new payload to the database
	6.10.7 Client applications

	6.11 REST and GraphQL based APIs
	6.11.1 IBM, GraphQL, and Loopback
	6.11.2 LoopBack models and relationships

	6.12 API testing
	6.12.1 Create a test from an API request
	6.12.2 Update the test case from a Swagger file and publish
	6.12.3 Gain insights into API quality

	6.13 Large file movement using the claim check pattern
	6.13.1 Build the file transfer
	6.13.2 Build an event-driven flow


	Chapter 7. Field notes on modernization for application integration
	7.1 IBM App Connect adoption paths
	7.1.1 Agile integration
	7.1.2 Adoption path options
	7.1.3 Conclusion

	7.2 Splitting up the ESB: Grouping integrations in a containerized environment
	7.2.1 What grouping do you have today?
	7.2.2 Splitting by business domain
	7.2.3 What about integrations that span business domains?
	7.2.4 Grouping within a domain
	7.2.5 Stable requirements and performance
	7.2.6 Synchronous versus asynchronous patterns
	7.2.7 Shared lifecycle
	7.2.8 A worked example
	7.2.9 Conclusion

	7.3 When does IBM App Connect need a local MQ server?
	7.3.1 Benefits of being dependency-free in container-based environments
	7.3.2 When can we manage without a local MQ server?
	7.3.3 Can I talk to multiple queues in the same transaction without a local MQ server?
	7.3.4 Coordinating a two-phase commit requires a local MQ server
	7.3.5 When else do I need a local MQ server?
	7.3.6 Why do we have so many integrations that use server connections?
	7.3.7 Conclusion

	7.4 Mapping images to helm charts
	7.4.1 Developing helm charts for Kubernetes
	7.4.2 Upgrading (extending) helm charts

	7.5 Continuous Integration and Continuous Delivery Pipeline using IBM App Connect V11 architecture
	7.5.1 Continuous Integration Delivery and Deployment
	7.5.2 Example pipeline - High-level concepts
	7.5.3 CI/CD pipeline in depth
	7.5.4 Considerations for CI/CD pipelines with IBM App Connect
	7.5.5 Practical example

	7.6 Continuous Adoption for IBM App Connect
	7.6.1 What does Continuous Adoption apply to in IBM App Connect?
	7.6.2 How can Continuous Adoption be implemented with IBM App Connect?

	7.7 High Availability and Scaling considerations for IBM App Connect in containers
	7.7.1 Overview
	7.7.2 Scaling
	7.7.3 High Availability

	7.8 Migrating centralized ESB to IBM App Connect on containers
	7.8.1 Overview
	7.8.2 Considerations for IBM MQ based integrations in containers
	7.8.3 Considerations for Http/WebServices based integration flows in containers
	7.8.4 Considerations for integrations that interact with databases
	7.8.5 Considerations for in containers
	7.8.6 Considerations for TCP/IP based integrations in containers
	7.8.7 Considerations for file-based integration in containers
	7.8.8 Considerations for integrating IBM App Connect with IBM Event Streams

	7.9 Splitting an integration across on-premises and cloud
	7.9.1 Overview
	7.9.2 Using callable flows with IBM App Connect Designer
	7.9.3 Callable flows versus APIs
	7.9.4 Cloud debugger for ACE on Cloud applications


	Chapter 8. Field notes on modernization for API lifecycle
	8.1 Move from DataPower only to API Connect
	8.1.1 Security Gateway
	8.1.2 API gateway
	8.1.3 Connectivity and mediation
	8.1.4 DataPower and API Connect compared
	8.1.5 DataPower to API Connect migration

	8.2 Enterprise APIs across a hybrid or multicloud boundary
	8.3 How many API Connect Clouds and Gateways
	8.3.1 Separate API Clouds
	8.3.2 Separate API Gateway Cluster

	8.4 Organization, Catalog and Space responsibilities for APIs
	8.5 Automated provisioning of a new API provider team
	8.6 High availability and scaling on containers for API Management
	8.6.1 High availability in a containerized environment
	8.6.2 Scalability of API Connect in containerized environment
	8.6.3 Conclusion

	8.7 IBM API Connect API Test Pyramid
	8.7.1 Practical Test Pyramid
	8.7.2 Requirements
	8.7.3 Test types
	8.7.4 Automated testing
	8.7.5 Conclusion


	Chapter 9. Field notes on modernization for messaging
	9.1 Modernizing your messaging topology with containers
	9.1.1 Typical existing topology
	9.1.2 Removing local connections
	9.1.3 Containerizing queue managers
	9.1.4 Fine-grained queue manager deployment
	9.1.5 Decentralization
	9.1.6 Application containerization and operational consistency

	9.2 IBM MQ availability
	9.2.1 Kubernetes deployment styles: Deployments (replica sets) versus stateful sets
	9.2.2 Multi-instance queue managers in containers
	9.2.3 Further improving service availability with additional independent queue managers
	9.2.4 Connection distribution

	9.3 IBM MQ scaling
	9.4 Automation of IBM MQ provisioning using a DevOps pipeline
	9.4.1 Design for DevOps pipeline
	9.4.2 Building a sample IBM MQ pipeline


	Appendix A. Additional material
	Locating the GitHub material
	Cloning the GitHub material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

