
Kubernetes for
Operators

 2

Table of Contents

Containers and Kubernetes: Why Operators Should Care

Who Should Read This Book?

Why Containers?

A Kubernetes Primer

Kubernetes Controllers

How Kubernetes Help Operators

Two Elements of Kubernetes that All Operators Should Know About

Operators Tailor Kubernetes to Application Needs

Cluster API Streamlines Kubernetes Provisioning and Management

First Principles for Operators

Top Six Questions to Answer Upfront

Question 1: Where should I put my Kubernetes cluster?

Question 2: How should I build my Kubernetes cluster?

Question 3: How many clusters should I build?

Question 4: What about underlying infrastructure?

Question 5: What about security?

Question 6: How can I extend Kubernetes to address specific
operational needs?

Which Flavor of Kubernetes Should You Choose?

Managed Kubernetes

Kubernetes Distributions

Do It Yourself

Avoiding Missteps

What Should Do Next?

3

3

4

4

5

5

6

6

6

7

8

8

8

9

9

9

10

12

12

12

12

13

15

K U B E R N E T E S F O R O P E R ATO R S

Containers and Kubernetes:
Why Operators Should Care
If you’re part of an operations team, you know that your company’s success
depends on your team’s ability to operate digital services reliably at scale.
Enterprises are increasingly turning to cloud native technologies, including
containers and Kubernetes, to achieve this goal.

If you are contemplating this transition, you are likely under pressure from
above and below. Executives are asking you to deliver more reliable services
at a lower price point, while development teams want containerized
infrastructure on which to create and deliver new applications.

In the traditional approach, your team has to manage a large number of
dependencies with custom configurations for each application. Kubernetes
is a way to commoditize the way you deliver infrastructure, simplifying
management and leveling the playing field for operations of all sizes.
Containers enable much greater application portability.

For operators, containers and Kubernetes have many benefits:

Eliminate the need to manage application dependencies at the
infrastructure level

Deliver infrastructure in a more cloud-like way

Run an application on almost any infrastructure—on-premises or in
the cloud

Move applications easily between environments in response to need
or cost

Cloud native technologies are new and evolving fast. A whole ecosystem of
solutions and services is emerging to address a wide variety of use cases
and needs. There’s a lot to learn. This eBook will help you map your
company’s journey to containers and Kubernetes, including important
questions your team should ask itself and an exploration of the most
common missteps.

Who Should Read This Book?

No two organizations are alike, and titles can vary widely from one
to the next. However, this book is targeted to people that focus on
platform and infrastructure operations.

Infrastructure engineers, systems engineers, and site reliability
engineers (SREs)—anyone responsible for the infrastructure on which
Kubernetes will run—can benefit.

 3

K U B E R N E T E S F O R O P E R ATO R S

Why Containers?
One of the big challenges that operations teams face is the complexity of
managing highly custom applications and the difficulty of moving applications
from one environment to another. By encapsulating all of an application’s
dependencies, containers make applications much more portable—and
therefore make an operator’s job simpler. A container can move from
development to QA to production—or from one cloud environment to
another—without requiring any changes to the container—and with no
hardware and software reconfigurations in the target environment.

While many organizations are moving existing legacy applications into
containers more or less as is, new application development makes use of
containers in conjunction with a microservices architecture that breaks down
an application into component services. From an operational standpoint, there
are two critical things to understand about the microservices approach:
applications scale out instead of scaling up, and there are many more
application components to manage

A Kubernetes Primer
Container environments change more rapidly than VM environments. Having
a way to manage containerized applications effectively is an essential
element of cloud native and microservices architecture. Kubernetes has
emerged as the leading solution for orchestrating and managing
containerized applications.

The components of Kubernetes “play off” each other to coordinate activities
and react to events like musicians playing jazz. At its core, Kubernetes is a

Containers encapsulate an application in a form that’s
portable and easy to deploy. Containers can run on any
compatible system—in any cloud—without changes.
Containers consume resources efficiently, enabling high
density and utilization.

Kubernetes makes it possible to deploy and run complex
applications requiring multiple containers by clustering
physical or virtual resources for application hosting.
Kubernetes is extensible, self-healing, scales applications
automatically, and is inherently multi-cloud.

Microservices architecture breaks down an application into
multiple component services, enabling greater parallelism
during both development and execution.

database with some interesting features layered on top of it. Kubernetes uses
a set of controllers that each implement specific capabilities and work
together to produce the end result. Kubernetes controllers can be ripped out
and replaced to extend the system and adapt it to new requirements and
environments.

The diagram below shows the parts of a typical Kubernetes system. The core
of the system is the database, etcd. The state of the cluster is stored there
(and only there). In front of etcd is the API Server. Nothing else in Kubernetes
talks to etcd directly. The API Server exposes a RESTful interface and
provides the services necessary in a distributed system.

ALL interactions with Kubernetes are mediated via APIs. This approach
can be a big change for both operations teams and developers.

K U B E R N E T E S F O R O P E R ATO R S

 4

file:https://kubernetes.io/

The Scheduler and the Controller Manager implement most of the orchestration
logic of Kubernetes. Together, etcd, the API Server, Scheduler, and Controller
Manager make up the Kubernetes control plane; they can run on a single node
or across multiple nodes for availability.

Worker nodes make up the data plane of Kubernetes; each worker node runs
the container runtime (Docker in the diagram) and a local daemon called the
Kubelet that communicates with the API Server.

Kubernetes Controllers
Kubernetes Controllers ensure that the observed state of the cluster is as close
as possible to your desired state. Each controller monitors its configuration,
stored in the API Server. It then looks at the state of the world and tries to

Portability

Run Kubenetes everywhere.

Leverage a common upstream
framework to run workloads
on-premises, in public clouds

or hybrid cloud

Integration

Build on your SDDC
infrastructure.

Apply Kubernetes as a practical
path to public cloud adoption

Community

Move in lockstep with the
community.

Work with a partner that
demonstrates leadership in the

open source community.

make the state of the world match its configuration. If a controller can’t fully
achieve the desired state, it retries. Controllers are both patient and diligent,
resulting in a very stable distributed system pattern that is self-healing. If
something goes wrong, a controller will work to fix it. If the desired state
changes while a controller is working, it changes course and works toward the
new desired state. Controllers react to each other very quickly, making
Kubernetes extremely responsive. The actions of the system adapt to the state
of the world in real time.

How Kubernetes Helps Operators
For platform operators, infrastructure resources in Kubernetes are clustered
and can be consumed and released elastically, enabling seamless scaling and
higher resource utilization. Kubernetes eliminates many of the manual
provisioning and other tasks of conventional enterprise IT.

Kubernetes clusters deployed in different private and public clouds provide a
uniform (or very similar) management environment and identical principles of
operation, reducing the learning curve associated with managing a multi-cloud
environment and minimizing the risk of operator errors.

MASTER NODE

Scheduler

API Server Docker

Controller
Manager

NODE

Docker

Kublet

Kublet

etcd

 5

K U B E R N E T E S F O R O P E R ATO R S

Two Elements of
Kubernetes that All
Operators Should
Know About
If you are new to Kubernetes, there are two
emerging elements of the environment that you
should know about. These two things are rapidly
changing the way that operators interact with
Kubernetes:

Operators. Custom Kubernetes
controllers that implement domain-
specific logic for an application

Cluster API. Declarative APIs that
facilitate cluster creation, configuration,
and management in the Kubernetes
ecosystem

Operators Tailor Kubernetes
to Application Needs
Kubernetes Custom Resource Definitions or CRDs
extend the resources the API Server can manage.
CRDs are often paired with a custom controller
called an Operator. By automating application-
specific tasks that otherwise have to be done

manually, Operators allow you to more easily
deploy and manage applications on Kubernetes.

Operators encapsulate domain-specific knowledge
for a specific application. You can think of this as
embodying the knowledge and logic that might
traditionally be captured in run books. The open
source Operator Framework provides the
necessary tools to facilitate Operator creation.

Cluster API Streamlines
Kubernetes Provisioning and
Management
Infrastructure-level management is an area of rapid
evolution for Kubernetes. Cluster API is a
Kubernetes project to bring declarative,
Kubernetes-style APIs to cluster creation,
configuration, and management. It provides
additive functionality on top of core Kubernetes.
VMware is actively contributing to the
development of the Kubernetes Cluster API.

One of the goals is to provide a way to let
operators declaratively define what a cluster
should look like. For example, using the Cluster API
you might declare that you want seven servers
running in your Kubernetes cluster. If you later
decide that you want eight servers running, you

 6

use the Cluster API to change the number to eight
and it will automatically spin up another virtual
machine, applying Kubernetes logic to
infrastructure. If one of those servers fails, Cluster
API will automatically spin up a new one to take its
place, using self-healing to return to the desired
state.

To make Cluster API work for a particular type of
environment, you need a provider for that
environment. Provider implementations are already
available for major public clouds as well as VMware
vSphere. GitHub has a list of many of the available
providers.

Where to Learn More

The What and the Why of the Cluster API

[blog]

Cluster API Gitbooks

K U B E R N E T E S F O R O P E R ATO R S

https://github.com/operator-framework
https://blogs.vmware.com/cloudnative/2019/03/14/what-and-why-of-cluster-api/
https://blogs.vmware.com/cloudnative/2019/03/14/what-and-why-of-cluster-api/
https://github.com/kubernetes-sigs/cluster-api

First Principles for Operators
There are a few basic principles that will help your organization move forward
with Kubernetes.

You don’t have to decide everything upfront. Because Kubernetes
is flexible and extensible, decisions you make today don’t
necessarily lock you in for the rest of time. For example, you can
choose NGINX ingress controller now, and change to something else
like Contour in six months or a year as your needs change.

Everything doesn’t have to be greenfield. You don’t have to start
from scratch and deploy all new tools. Look for integration points
with the tools you are already using like Jenkins.

Enable your stakeholders. Don’t ignore the needs of others that will
be using the platform. If developers are used to being able to access
system logs for debugging, make sure they still have access and
know how to take advantage of any new tools.

K U B E R N E T E S F O R O P E R ATO R S

 7

Top Six Questions to Answer Upfront
While you don’t have to answer every design question upfront, there are a
few questions you should consider carefully before you start deploying
Kubernetes. In this section, we look at the top six questions. While the
decisions are ultimately up to your team, we’ve tried to provide guidance
based on experience with many teams adopting Kubernetes.

Question 1: Where should I put my
Kubernetes cluster?

The first question that teams grapple with when they approach Kubernetes is
where to deploy it. Should they deploy on-premises? In the cloud? There are
a range of factors you need to consider:

On-premises. If you deploy Kubernetes on-premises, you’ll have
complete control and more flexibility to tailor the deployment to
your business needs. On the other hand, Kubernetes deployment
requires some expertise, and there are a lot more decisions you’ll
have to make—and a lot more things you’ll ultimately be
responsible for managing. As you’ll learn shortly, there are a few
decisions you have to get right from the beginning.

Cloud. Cloud-based Kubernetes services like Amazon Elastic
Kubernetes Service (Amazon EKS), Google Kubernetes Engine
(GKE), and Azure Kubernetes Service (AKS) provide key primitives
that can make it easier to get started. However, you may be
trading future flexibility for speed and ease of initial deployment.

 8

Question 2: How should I build my
Kubernetes cluster?

There are two dimensions to this question: What infrastructure environment
should you choose? And, what software should you install in that
environment? If you choose a cloud service, those decisions are largely
decided for you.

If you’re deploying on-premises, will the infrastructure be virtualized or bare-
metal? Both can work, so it may come down to what you have and what
you’re most comfortable with. The major cloud providers deploy Kubernetes
on top of virtual machines, as do many enterprises with running VM
environments.

Will you purchase new hardware for your deployment or repurpose existing
hardware? This largely depends on whether you have up-to-date hardware
available for the purpose.

When it comes to software, the biggest decision is whether to choose:

• A hosted cloud service

• A packaged software distribution

• A full do-it-yourself (DIY) installation from open source

This topic is discussed in more detail in the following chapter. Our general
guidance is to stay as close to upstream Kubernetes as possible no matter
which option you choose. Compatibility ensures that you can move
operations between environments with no or minimal changes. Kubernetes is
evolving quickly so you want to ensure compatibility with the latest versions
and avoid wandering into any walled gardens.

K U B E R N E T E S F O R O P E R ATO R S

 9

Question 3: How many clusters
should I build?

A question that comes up all the time is whether or not to have everything in
a single large cluster. You should think of Kubernetes as a multi-cluster
solution and cultivate a multi-cluster mindset. Having multiple clusters
reduces the size of each failure domain and provides you with greater
flexibility going forward. For example, you can stand up a new cluster with a
new feature and migrate services to that cluster to take advantage of the
feature.

As a purely practical matter, the maximum “comfortable” size of a
Kubernetes cluster is around 500 nodes. Beyond that, you will have to start
tuning Kubernetes itself to continue scaling; that’s an arduous process..

Question 4: What about underlying
infrastructure?

There are several infrastructure “plumbing” considerations that you definitely
need to think about and understand before you begin to deploy. These may
be difficult to change after the fact:

Container networking. Kubernetes gives you flexibility regarding networking
through Container Network Interface (CNI) plugins. There are a variety of CNI
plugins that support various approaches to software-defined networking
(SDN) and various network options. If you have to have a particular network
capability (for example multicast) you’ll need a CNI that supports that
feature. You can view a list of available CNI plugins on GitHub.

Persistent storage. A surprising number of teams get fairly far along in the
Kubernetes planning process without thinking about storage. Similar to
networking, Kubernetes provides storage flexibility through drivers that
conform to the Container Storage Interface (CSI). Many storage vendors offer
drivers for compatibility with Kubernetes. You can view a list of available CSI
drivers on GitHub.

Connectivity. Plan ahead to make sure you have the appropriate
infrastructure surrounding Kubernetes to support your application needs.
This may include things like load balancers and ingress controllers.

Security. A final item that’s hard to bolt-on to Kubernetes after the fact is
security. Be sure and involve your security team in Kubernetes planning.

Question 5: What about security?
The security model is an area that people often overlook during Kubernetes
planning phases:

Multi-team vs. Multi-tenant. This distinction can be useful to think about
during security planning:

Multi-team. You need infrastructure to support different teams within the
same organization so there is a certain level of trust.

Multi-tenant. You need infrastructure to support separate organizations
where there is no trust relationship.

This distinction affects your approach to security. Kubernetes does not have
a hard multi-tenancy design. Multi-tenancy can be enabled, but it doesn’t
come right out of the box.

K U B E R N E T E S F O R O P E R ATO R S

 1 0

Authentication/authorization. Use something like OIDC and connect your
existing authentication system to Kubernetes from the beginning. It’s simple
to do and worth the effort.

Policies. People often deploy Kubernetes and forget to configure things
like resource quotas and pod security policies. These are essential both to
secure your cluster and to achieve high levels of utilization.

Backup and restore. Having a regular backup policy is essential to protect
your Kubernetes environment. It enables you to move applications to
another cluster in a disaster situation and is also useful for moving a
collection of resources from one cluster to another. Velero is a useful tool,
providing backup and migration of Kubernetes applications and their
persistent volumes.

Question 6: How can I extend
Kubernetes to address specific
operational needs?

Unlike other platforms like OpenStack, Kubernetes is highly extensible. If
you have a scenario that Kubernetes doesn’t address, you can extend
Kubernetes without having to worry about the upgrade path going forward.
You should approach Kubernetes with that mindset and be prepared to take
advantage of existing Kubernetes extensions where possible—and to
develop your own when necessary. The Cloud Native Computing
Foundation (CNCF) maintains a landscape that shows many of the active

Kubernetes projects in areas ranging from database to key management to
observability, making it a little easier to identify the ones that you want to
either adopt immediately or track for possible future use. Be warned,
however, that the number of items in the landscape is already a little
overwhelming.

K U B E R N E T E S F O R O P E R ATO R S

 1 1

K U B E R N E T E S F O R O P E R ATO R S

Which Flavor of Kubernetes Should
You Choose?

Earlier you learned that there are three basic flavors of Kubernetes:

One of your first decisions, as noted earlier, is to decide which one(s) to
choose. The good news is that if you get six months into deployment and
decide for whatever reason that you made the wrong initial decision, you
can still switch strategies and recover. Whatever work you’ve done in one
environment should be largely compatible with the other environments.
After all, that’s one of the key strengths of Kubernetes and containers.

Managed Kubernetes
The major cloud providers all offer Kubernetes platforms that provide an
easy, turnkey solution that you can use to get up and running with
Kubernetes in a managed environment. The hosted cloud solutions have all
committed to maintaining compatibility with upstream Kubernetes. However,
if portability is important to your operations, you still need to be careful to
avoid incorporating other services that are only available in a particular cloud.

K U B E R N E T E S F O R O P E R ATO R S

Kubernetes Distributions
A variety of vendors—Red Hat, Canonical, and many others—offer packaged
Kubernetes distributions. For anyone who has used Linux, the packaged
distribution model will seem familiar. However, there’s an important distinction:
Kubernetes is young and changing extremely quickly. Because they may limit
future compatibility and flexibility, avoid deep forks that diverge significantly
from upstream Kubernetes.

Distributions provide greater control than managed Kubernetes, including full
access to the control plane. They can work well if your operations stay within
the confines of what the distribution offers. However, if you need to extend
beyond the boundaries created by the distribution, you could experience issues.

Do It Yourself
The final approach is to take a complete, do-it-yourself approach and build
Kubernetes from source, either on your own or with the help of a partner. This
approach requires the most technical expertise and more personnel. You’ll
need to pay more attention to where Kubernetes is headed and create a
cluster lifecycle strategy to keep up with changes, and you’ll be more
dependent on the community for support.

However, this is the option that gives you the most flexibility and the greatest
control. Our opinion is that it’s not as hard as people think and you shouldn’t
simply rule it out. We continue to believe that this is the best option for many
organizations.

Managed Cloud
Service

Kubernetes
distribution

Do it yourself

 1 2

K U B E R N E T E S F O R O P E R ATO R S

Avoiding Missteps
The following table describes some of the most
common missteps that we see organizations
make as they move to adopt Kubernetes—along
with tips on how to avoid them.

Misstep 1:
Going all-in on managed Kubernetes

It’s awesome to no longer have to manage
your control pane. However, there are
downsides associated with not having full
control. Some limitations may be
showstoppers. with tips on how to avoid
them.

Misstep 2:
Solving problems you don’t yet have

With platforms that aren’t extensible, if you
don’t start out with a capability, it’s hard to
add later. Kubernetes turns this paradigm on
its head. Designing solutions for problems
you think may arise in the future just adds
complexity and delays deployment.

Misstep 3:
Letting perfect be the enemy of done

This misstep is a corollary to the previous
one. You can waste a lot of cycles guessing
about future requirements and trying to build
an ideal solution. If you narrow your scope,
you can finish deployment more quickly and
start gaining operational experience.

Common Kubernetes Missteps

 1 3

K U B E R N E T E S F O R O P E R ATO R S

Misstep 4:
Trading “battle-tested” for “cutting-edge”

If you look at the CNCF landscape, there are
a lot of interesting technologies. Resist the
temptation to bet your business on
technology that’s brand new. Track
interesting projects and give them time to
mature.

Misstep 7:
Using available tools for federation

Federation is a hard problem, and current
tools likely won’t meet your needs. Instead,
ensure you have copies of application
containers and data where they can be used
for DR. A modest substitution of human
effort for fancy federation insulates you from
outages that span zones.

Misstep 5:
Open source is not free

The burden to support open source software
falls on you. Be diligent in evaluating a
project before adopting it: How many stars
does it have? How healthy is its community?
Are people responsive? Are pull requests
reviewed and merged? Are there guidelines
for contributors?

Misstep 8:
Not implementing resource quotas

To increase resource utilization, you must
implement resource quotas that ensure that
no one person or application consumes too
many Kubernetes resources. This allows you
to do tighter bin packing on each node.

Misstep 6:
Mixing too many workloads on one cluster

It is easy to add workloads to an existing
cluster, but new apps may require changes
that have undesired effects elsewhere, even
compromising security. It’s better to have
multiple smaller clusters. Managed
Kubernetes makes it fast and easy to add
new clusters for unique requirements.

Misstep 9:
Not using operators

Operators are becoming the preferred way
for managing domain-specific knowledge
and simplifying application management in
Kubernetes. Take advantage of existing
operators when they are available and
modify or build your own operators when
necessary.

Common Kubernetes Missteps

 1 4

K U B E R N E T E S F O R O P E R ATO R S

What Should I Do Next?
If you’re a part of an infrastructure team starting out with Kubernetes, the most
important thing is to get started. Follow links to learn more, watch videos, and engage
with your peers. In addition to connecting online, you may find local Kubernetes
meetups in your area, and there are annual KubeCon + CloudNativeCon conferences in
North America, Europe, and China. In addition, VMware has a variety of resources for
everyone on the Kubernetes journey:

Every Friday at 1PM Pacific Time, VMware holds an informal hangout session focusing
on a specific Kubernetes-related topic. You can see the archive of past sessions on
YouTube and subscribe to view the live sessions.

KubeAcademy provides an accessible learning path to advance
your skill set, regardless of where you are on your Kubernetes
journey. Courses are designed and delivered by Kubernetes
experts, for free.

And be sure and follow @VMwareTanzu on Twitter to keep up with all the latest cloud
native developments.

Read our regular blog to find out the latest. Posts cover diverse topics and new blogs
are added regularly.

Learn about Cluster API, how it works, its current state, and why it’s crucial for the
future of Kubernetes.

TGIK

Kubernetes Academy

Cloud Native Apps Blog

Watch a webinar on Cluster API

 1 5

https://kubernetes.io/community/
https://kubernetes.io/community/
https://kubernetes.io/community/#events
https://kubernetes.io/community/#events
https://events19.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2019/
https://www.youtube.com/channel/UCjQU5ZI2mHswy7OOsii_URg/featured
https://twitter.com/VMwareTanzu
https://www.youtube.com/channel/UCdkGV51Nu0unDNT58bHt9bg
http://kubernetes.academy
https://blogs.vmware.com/cloudnative/
https://www.youtube.com/watch?v=sCD50fO95hI

